Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Electronic Supplementary Information

Template-driven construction of [8]-imidazolium macrocycles

Kai Hua,^a Ming-Ming Gan,^a Xue-Ru Liu,^a Le Zhang,^a Yuan-Yuan An*^a and Ying-Feng Han*^a

^a Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science Northwest University, Xi'an 710127, P. R. China

E-mail: yfhan@nwu.edu.cn

yyan@nwu.edu.cn

Table of Content

1.	General information	S3
2.	General procedure	S3
3.	Selected NMR, UV-Vis and MS spectra for new compounds	S9
4.	UV-Vis, fluorescence and ¹ H NMR titration studies on molecular recognition	S28
5.	References	S30

1. General information

N-*p*-bromoemethylbenzene-N'-cinnamicacidmethylester imidazolium bromide was synthesized according to the literature procedure. All manipulations were performed under an nitrogen atmosphere using standard Schlenk techniques. Glassware was dried in an oven at 130 °C before use. Solvents were freshly distilled by standard procedures prior to use. H, Tac The and 2D NMR spectra were recorded on Bruker AVANCE III 400, JEOL ECZ400R and JEOL ECZ600R spectrometers. Chemical shifts (δ) are expressed in ppm downfield from tetramethylsilane using the residual protonated solvent as an internal standard. All coupling constants are expressed in Hertz. Mass spectra were obtained with a Bruker microTOF–Q II mass spectrometer (Bruker Daltonics USA) in electrospray ionisation (ESI) mode. UV–vis spectra were obtained using an Agilent Cary-100 spectrophotometer.

2. General procedure

2.1 Synthesis of H₄-1a(PF₆)₄

Compounds 2,6-di(1H-imidazol-1-yl)pyridine (21.0 mg, 0.1 mmol) and N-*p*-bromoemethylbenzene-N'-cinnamicacidmethylester imidazolium bromide(147.0 mg, 0.3 mmol) were added to a 25 mL Schlenk flask. To this mixture was added DMF (2.5 mL), and the reaction mixture was heated to 120 °C for 24 h. A white solid was isolated by filtration, washed with ethyl acetate and dried *in vacuo*. The obtained solid was transferred to a bottle containing 30 mL methanol. Upon addition of a solution of NH₄PF₆ (164.0 mg, 1.0 mmol) in methanol (10 mL) to this solution, the colorless hexafluorophosphate salt H₄-**1a**(PF₆)₄ precipitated immediately. The precipitated solid was collected by filtration, washed with small portions of water and methanol, and dried *in vacuo*. Yield: 120.0 mg (0.080 mmol, 83%, over two steps). ¹H NMR (400 MHz, CD₃CN): δ 9.61 (s, 2H), 9.00 (s, 2H), 8.43 (t, 1H, J = 8.0 Hz), 8.23 (s, 2H), 7.92 (d, 2H, J = 8.2 Hz), 7.86 (d, 4H, J = 8.4 Hz), 7.81 (s, 2H), 7.74 (d, 2H, J = 16.0 Hz), 7.64 (d, 4H, J = 8.4 Hz), 7.60 (d, 2H, J = 8.2 Hz), 7.55 (br, 10H), 6.64 (d, 2H, J = 16.0 Hz), 5.52 (s, 4H), 5.45 (s, 4H), 3.77 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz,

CD₃CN): δ 167.3, 146.1, 145.6, 142.8, 137.0, 136.3, 135.7, 135.5, 135.2, 134.9, 130.5, 130.3, 130.2, 124.3, 123.9, 123.5, 122.8, 121.1, 120.8, 115.7, 53.8, 53.4, 52.1 ppm. HRMS (ESI, positive ions): m/z = 582.6545 (calcd for [H₄-**1a** + 2PF₆]²⁺ 582.6590), m/z = 218.8559 (calcd for [H₄-**1a**]⁴⁺ 218.8471).

2.2 Synthesis of H₄-1b(PF₆)₄

Tetrakisimidazolium salt H₄-**1b**(PF₆)₄ was synthesized as described for H₄-**1a**(PF₆)₄ from 4,4'-bis(1-imidazolyl)biphenyl (20.0 mg, 0.06 mmol), N-*p*-bromoemethylbenzene-N'-cinnamicacidmethylester imidazolium bromide (75.0 mg, 0.15 mmol) and NH₄PF₆ (113.1 mg, 0.69 mmol). Yield: 75.0 mg (0.050 mmol, 71%, over two steps). ¹H NMR (400 MHz, CD₃CN): δ 9.06 (s, 2H), 9.01 (s, 2H), 7.96 (d, 4H, J = 8.6 Hz), 7.88 (s, 2H), 7.86 (s, 4H), 7.83-7.82 (m, 2H), 7.76 (d, 2H, J = 16.0 Hz), 7.73 (s, 2H), 7.72 (s, 1H), 7.65 (d, 4H, J = 8.6 Hz), 7.58-7.55 (m, 5H), 7.54 (s, 8H), 6.64 (d, 2H, J = 16.0 Hz), 5.48 (s, 4H), 5.46 (s, 4H), 3.77 (s, 6H) ppm. ¹³C{¹H} NMR (150 MHz, CD₃CN): δ 167.3, 142.7, 141.2, 136.7, 136.1, 135.4, 135.1, 135.0, 134.9, 130.3, 130.1, 129.4, 123.7, 123.6, 123.4, 123.3, 122.7, 122.6, 120.7, 53.2, 52.0 ppm. HRMS (ESI, positive ions): m/z = 365.1406 (calcd for [H₄-**1b**] + PF₆] ³⁺ 365.1298), m/z = 237.6204 (calcd for [H₄-**1b**] ⁴⁺ 237.6062).

2.3 Synthesis of [Ag₄(1a)₂](PF₆)₄

A sample of H₄-1a(PF₆)₄ (50.0 mg, 0.03 mmol) was dissolved in 15 mL of CH₃CN, and Ag₂O was added to this solution (40.0 mg, 0.17 mmol). The resulting suspension

was heated to 65 °C for 24 h under exclusion of light. After cooling to ambient temperature, the obtained suspension was filtered slowly through a short pad of Celite to obtain a clear solution. The filtrate was concentrated to 2 mL and diethyl ether (15 mL) was added. This led to the precipitation of a white solid. The solid was collected by filtration, washed with diethyl ether and dried *in vacuo* to give [Ag₄(1a)₂](PF₆)₄, as a colorless solid. Yield: 40.0 mg (0.014 mmol, 88%). ¹H NMR (400 MHz, CD₃CN): δ 8.33 (t, 2H, J = 8.0 Hz, H23), 7.91-7.88 (m, 4H), 7.79 (d, 4H, J = 8.0 Hz), 7.56 (d, 4H, J = 16.0 Hz, H4), 7.48-7.47 (m, 8H), 7.45 (s, 16H), 7.37-7.35 (m, 4H), 7.23 (d, 8H, J = 8.0 Hz), 7.01 (d, 8H, J = 8.0 Hz), 6.45 (d, 4H, J = 16.0 Hz, H3), 5.24 (s, 8H, H17/H12), 4.73 (br, 8H, H17/H12), 3.77 (s, 12H, H1) ppm. ¹³C{¹H} NMR (150 MHz, CD₃CN): δ 183.7 (C11/C20), 180.5 (C11/C20), 167.5 (C2), 149.8, 144.6, 143.4, 141.6, 137.4, 137.1, 135.6, 130.0, 129.4, 129.1, 125.0, 124.5, 123.5, 120.7, 120.3, 115.0, 55.7 (C17/C12), 52.2 (C1) ppm. HRMS (ESI, positive ions): m/z = 773.1167 (calcd for [Ag₄(1a)₂ + PF₆]³⁺ 773.1005), m/z = 543.5964 (calcd for [Ag₄(1a)₂]⁴⁺ 543.5842).

2.4 Synthesis of [Ag₄(1b)₂](PF₆)₄

Complex [Ag₄(**1b**)₂](PF₆)₄ was synthesized as described for [Ag₄(**1a**)₂](PF₆)₄ from H₄-**1b**(PF₆)₄ (40.0 mg, 0.03 mmol) and Ag₂O (50.0 mg, 0.22 mmol) in 20 mL of acetonitrile at 65 °C for 24 h under exclusion of light. Yield: 33.0 mg (0.011 mmol, 87%). ¹H NMR (600 MHz, CD₃CN): δ 7.62 (m, 16H, H22/H23), 7.57 (d, 4H, J = 16.0 Hz, H4), 7.54 (s, 4H, H9), 7.52 (br, 16H, H7/H6), 7.50 (s, 4H, H10), 7.42 (s, 4H, H18), 7.40 (s, 4H, H19), 7.19 (d, 8H, J = 7.4 Hz, H14), 7.16 (d, 8H, J = 7.4 Hz, H15), 6.46 (d, 4H, J = 16.0 Hz, H3), 5.27 (s, 8H, H12), 5.22 (s, 8H, H17), 3.77 (s, 12H, H1) ppm. ¹³C{¹H} NMR (150 MHz, CD₃CN): δ 181.3 (C11/C20), 167.5 (C2), 143.4 (C4), 141.8 (C24), 140.4 (C22), 139.1 (21), 137.8 (16), 135.7 (C5), 130.2 (C6), 128.9 (C13), 128.8 (C14), 126.3 (C15), 125.4 (C7), 125.1 (C23), 124.2 (C18), 124.1 (C9), 123.5 (C10), 123.3 (C19), 120.4 (C3), 55.6 (C17/C12), 52.3 (C1) ppm. HRMS (ESI,

positive ions): m/z = 823.1503 (calcd for $[Ag_4(1\mathbf{b})_2 + PF_6]^{3+} 823.1246$), m/z = 581.1319 (calcd for $[Ag_4(1\mathbf{b})_2]^{4+} 581.1022$).

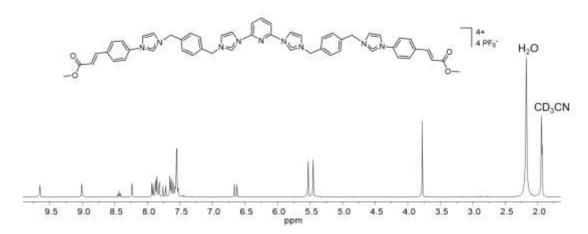
2.5 Synthesis of [Ag₄(2a)](PF₆)₄

A solution of [Ag₄(1a)₂](PF₆)₄ (40.0 mg, 0.014 mmol) in CD₃CN (0.5 mL) in an NMR tube was irradiated with a Philips mercury high-pressure lamp (λ = 365 nm) at ambient temperature for 24 h. Over this time the initially colorless solution turned brown. The conversion to [Ag₄(2a)](PF₆)₄ was quantitative, as judged by ¹H NMR spectroscopy. ¹H NMR (400 MHz, CD₃CN): δ 8.28 (t, 2H, J = 8.0 Hz, H23), 7.93-7.89 (m, 4H), 7.77 (s, 2H), 7.75 (s, 2H), 7.50-7.46 (m, 4H), 7.39-7.37 (m, 4H), 7.36 (s, 4H), 7.34 (s, 4H), 7.33 (s, 4H), 7.15-7.11 (m, 16H), 6.93 (s, 8H), 5.37 (s, 8H, H17/H12), 4.85 (br, 8H, H17/H12), 4.41 (s, 4H, H4), 4.02 (s, 4H, H3), 3.70 (s, 12H, H1) ppm. ¹³C{¹H} NMR (150 MHz, CD₃CN): δ 180.7 (C11/C20), 173.4 (C2), 149.6, 144.2, 139.9, 138.9, 137.3, 129.1, 128.7, 125.2, 124.0, 123.9, 122.4, 120.9, 114.9, 55.6 (C17/C12), 52.3 (C1), 45.8 (C4), 41.2 (C3) ppm. HRMS (ESI, positive ions): m/z = 543.5932 (calcd for [Ag₄(2a)₂]⁴⁺ 543.5842).

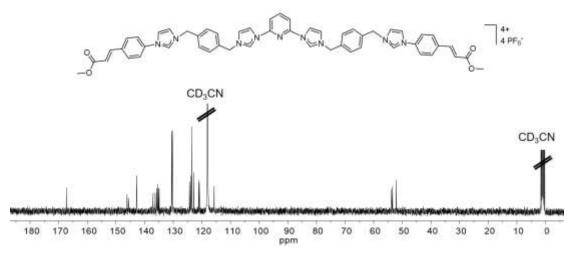
2.6 Synthesis of [Ag₄(2b)](PF₆)₄

Complex [Ag₄(**2b**)](PF₆)₄ was synthesized as described for [Ag₄(**2a**)](PF₆)₄ from [Ag₄(**1b**)₂](PF₆)₄ (33.0 mg, 0.011 mmol) in CD₃CN (0.5 mL). ¹H NMR (600 MHz, CD₃CN): δ 7.64 (s, 16H, H22/H23), 7.55 (d, 4H, J = 1.8 Hz, H10), 7.45 (d, 4H, J =

1.8 Hz, H9), 7.43 (d, 4H, J = 1.8 Hz, H19), 7.37 (d, 4H, J = 1.8 Hz, H18), 7.19 (d, 8H, J = 8.2 Hz, H14), 7.16 (s, 8H, H7/H6), 7.13 (d, 8H, J = 8.2 Hz, H15), 6.95 (s, 8H, H7/H6), 5.45 (s, 8H, H12), 5.38 (s, 8H, H17), 4.42 (s, 4H, H4), 4.02 (s, 4H, H3), 3.71 (s, 12H, H1) ppm. 13 C{ 1 H} NMR (150 MHz, CD₃CN): δ 182.0 (C20), 180.7 (C11), 173.7 (C2), 140.3 (C6), 140.2 (C5), 139.3 (C24/C21), 139.1 (C8), 137.9 (C16), 137.5 (C13), 128.6 (14), 128.4 (15), 128.3 (C22), 125.5 (C7), 125.3 (C23), 123.9 (C10), 123.8 (C9), 123.7 (C19), 123.5 (C18), 55.7 (C12), 55.3 (C17), 52.6 (C1), 46.1 (C4), 41.5 (C3) ppm. HRMS (ESI, positive ions): m/z = 581.1019 (calcd for [Ag₄(**2b**)₂]⁴⁺ 581.1022).


2.7 Synthesis of H₈-2a(PF₆)₈

A sample of [Ag₄(2a)](PF₆)₄ (40.0 mg, 0.014 mmol) was dissolved in a mixture of MeOH (30 mL) and CD₃CN (0.5 ml), and NH₄Cl (14.0 mg, 0.262 mmol) was added to this solution. A white solid (AgCl) precipitated immediately. The reaction mixture was stirred for 4 h. The resulting suspension was filtered through Celite to obtain a clear solution. The solvent was removed from this solution to give a white solid. The white solid was dissolved in MeOH (15 mL) and a solution of NH₄PF₆ (80.0 mg, 0.15 mmol) in methanol (5 mL) was added. The mixture was stirred at ambient temperature for 8 h. After this period a white solid precipitated, which was isolated by filtration, washed with water and methanol, and dried in vacuo. Yield: 35.0 mg (0.012 mmol, 86%). ¹H NMR (400 MHz, CD₃CN): δ 10.39 (s, 4H, H20/H11), 8.96 (s, 4H, H20/H11), 8.43 (t, 2H, J = 8.2 Hz, H23), 8.23 (s, 4H), 7.93 (s, 2H), 7.91 (s, 2H), 7.64 (s, 4H), 7.59 (s, 4H), 7.55 (d, 8H, J = 8.0 Hz), 7.49 (s, 4H), 7.47 (d, 8H, J = 8.0 Hz),7.35 (d, 8H, J = 8.4 Hz), 7.27 (d, 8H, J = 8.4 Hz), 5.53 (s, 8H, H17/H12), 5.39 (s, 8H, H17/H12), 4.50 (s, 4H, H4), 4.00 (s, 4H, H3), 3.71 (s, 12H, H1) ppm. HRMS (ESI, positive ions): m/z = 825.5483 (calcd for $[H_8-2a + 5PF_6]^{3+} 825.5346$), m/z = 582.9164(calcd for $[H_8-2a + 4PF_6]^{4+}$ 582.9098).


2.8 Synthesis of H₈-2b(PF₆)₈

Octakisimidazolium salt H_8 -**2b**(PF6)8 was synthesized as described for H_8 -**2a**(PF6)8 from [Ag₄(**2b**)](PF₆)4 (36.0 mg, 0.012 mmol), NH₄Cl (14.0 mg, 0.262 mmol) and NH₄PF₆ (102.0 mg, 0.520 mmol). Yield: 36.0 mg (0.011 mmol, 94%). ¹H NMR (600 MHz, CD₃CN): δ 9.08 (s, 4H, H20), 8.94 (s, 4H, H11), 7.92 (d, 8H, J = 8.4 Hz, H15), 7.83 (s, 4H, H9), 7.72 (d, 8H, J = 8.4 Hz, H14), 7.65 (s, 4H, H19), 7.56 (s, 4H, H10), 7.55-7.49 (m, 16H, H22/H23), 7.46 (s, 4H, H18), 7.38 (d, 8H, J = 8.4 Hz, H7), 7.30 (d, 8H, J = 8.4 Hz, H6), 5.45 (s, 8H, H12), 5.41 (s, 8H, H17), 4.50 (s, 4H, H4), 4.00 (s, 4H, H3), 3.71 (s, 12H, H1) ppm. ¹³C{¹H} NMR (150 MHz, CD₃CN): δ 173.4 (C2), 142.1 (C5), 141.7 (C23), 141.5 (C16), 135.7 (C21), 135.6 (C13), 135.5 (C11), 135.3 (C20), 134.1 (C8), 130.7 (C6), 130.5 (C22), 129.8 (C15), 124.1 (C10), 123.9 (C19), 123.8 (C14), 123.7 (C18), 123.1 (C9), 122.9 (C7), 53.6 (C12), 53.5 (C17), 52.7 (C1), 45.2 (C4), 43.4 (C3) ppm. HRMS (ESI, positive ions): m/z = 1385.8143 (calcd for [H₈-**2b** + 6PF₆]²⁺ 1385.8203), m/z = 875.5479 (calcd for [H₈-**2b** + 5PF₆]³⁺ 875.5587), m/z = 620.4241 (calcd for [H₈-**2b** + 4PF₆]⁴⁺ 620.4278), m/z = 467.3423 (calcd for [H₈-**2b** + 3PF₆]⁵⁺ 467.3493).

3. Selected NMR, UV-vis and MS spectra for new compounds

Fig. S1 ¹H NMR spectrum of H₄-**1a**(PF₆)₄ (400 MHz, CD₃CN).

Fig. S2 13 C 1 H 13 NMR spectrum of H₄-**1a**(PF₆)₄ (100 MHz, CD₃CN).

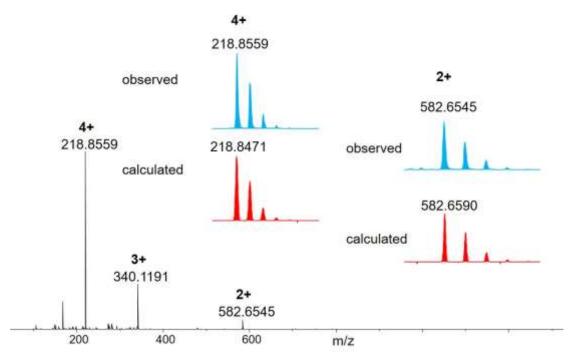
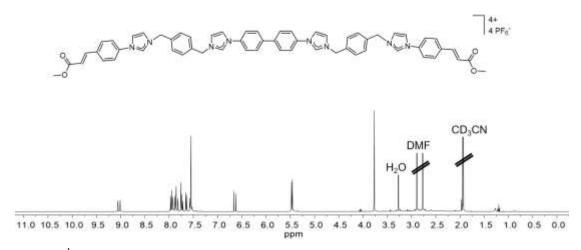
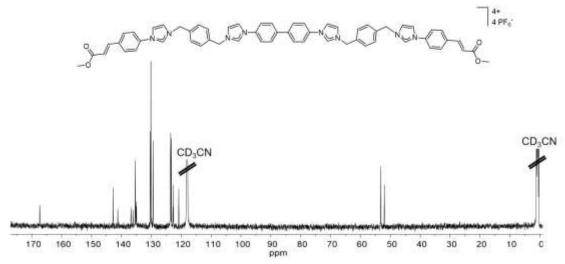




Fig. S3 HR-ESI mass spectrum (positive ions) of H₄-1a(PF₆)₄.

Fig. S4 ¹H NMR spectrum of H₄-**1b**(PF₆)₄ (400 MHz, CD₃CN).

Fig. S5 13 C $\{^{1}$ H $\}$ NMR spectrum of H₄-**1b**(PF₆)₄ (150 MHz, CD₃CN).

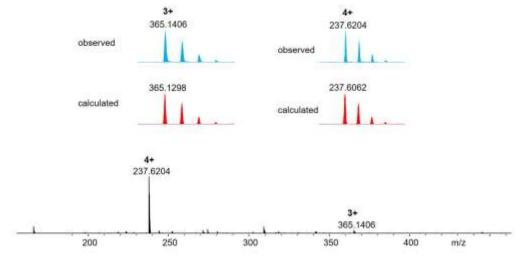
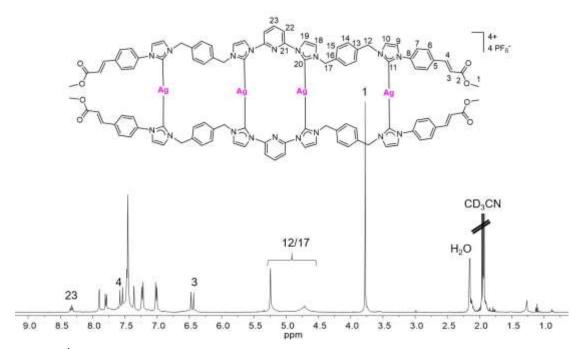



Fig. S6 HR-ESI mass spectrum (positive ions) of H₄-1b(PF₆)₄.

Fig. S7 1 H NMR spectrum of [Ag₄(1a)₂](PF₆)₄ (400 MHz, CD₃CN).

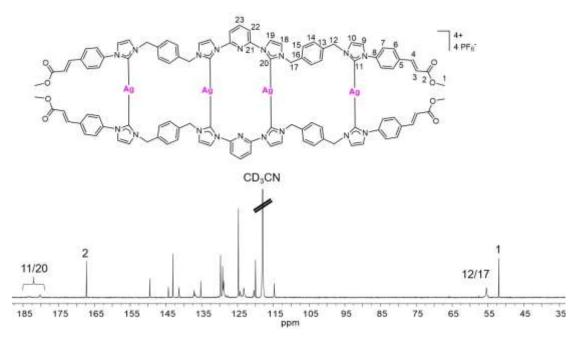


Fig. S8 $^{13}C\{^{1}H\}$ NMR spectrum of [Ag₄(1a)₂](PF₆)₄ (150 MHz, CD₃CN).

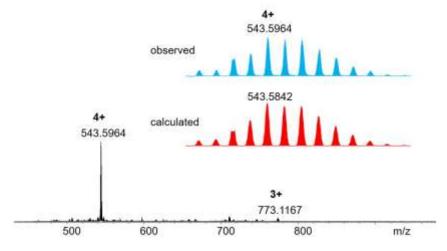
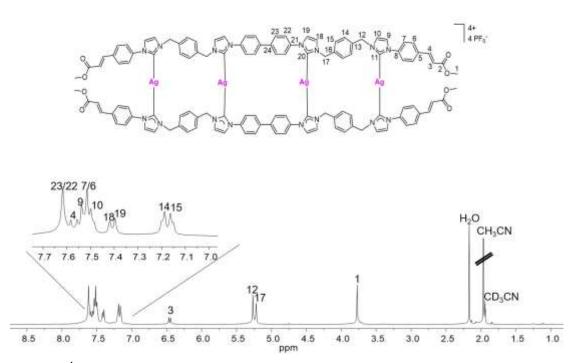



Fig. S9 HR-ESI mass spectrum (positive ions) of $[Ag_4(1a)_2](PF_6)_4$.

Fig. S10 1 H NMR spectrum of [Ag₄(**1b**)₂](PF₆)₄ (600 MHz, CD₃CN).

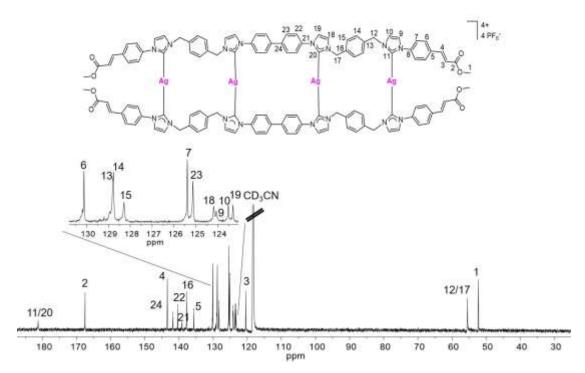


Fig. S11 13 C $\{^{1}$ H $\}$ NMR spectrum of [Ag₄(1b)₂](PF₆)₄ (150 MHz, CD₃CN).

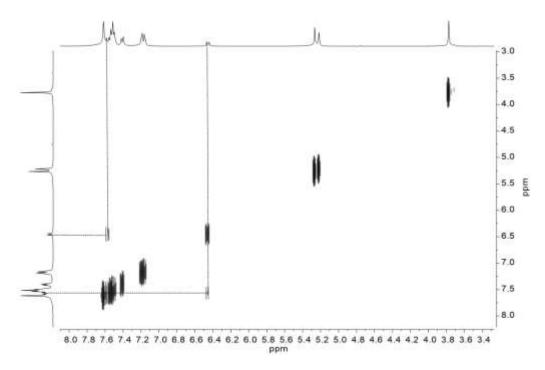
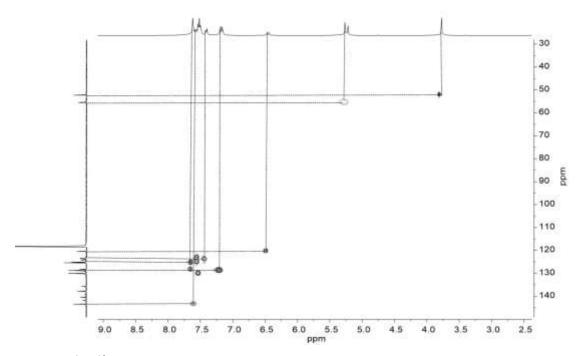
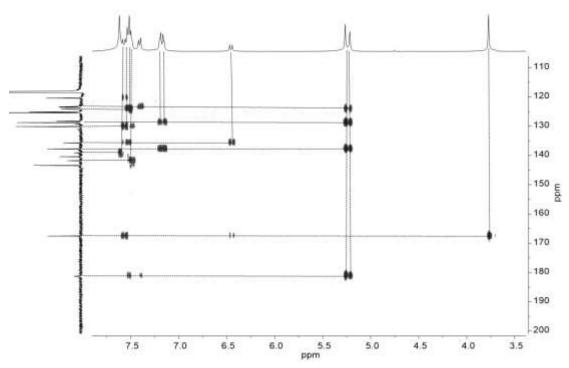




Fig. S12 1 H- 1 H COSY NMR spectrum of [Ag₄(1b)₂](PF₆)₄ (600 MHz, CD₃CN).

 $\textbf{Fig. S13} \ ^{1}\text{H-}^{13}\text{C HSQC NMR spectrum of } [Ag_{4}(\textbf{1b})_{2}] (PF_{6})_{4} \ (600 \ \text{MHz}, \ \text{CD}_{3}\text{CN}).$

Fig. S14 1 H- 13 C HMBC NMR spectrum of [Ag₄(**1b**)₂](PF₆)₄ (600 MHz, CD₃CN).

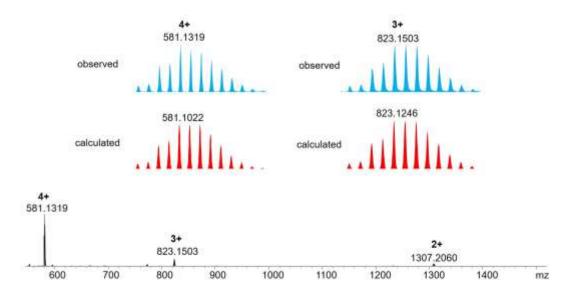


Fig. S15 HR-ESI mass spectrum (positive ions) of [Ag₄(1b)₂](PF₆)₄.

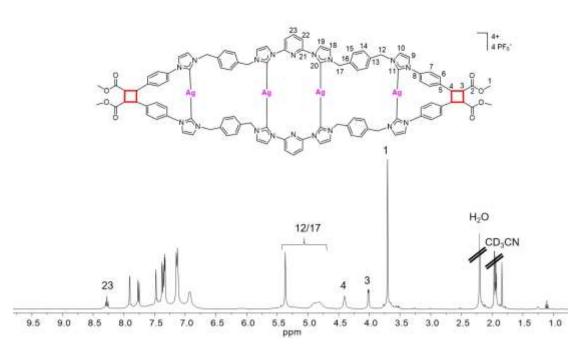
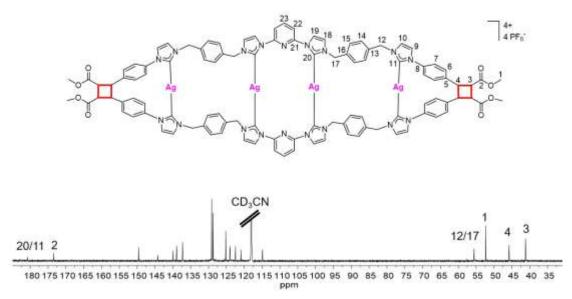



Fig. S16 1H NMR spectrum of [Ag4(2a)](PF6)4 (600 MHz, CD3CN).

 $\textbf{Fig. S17} \ ^{13}\text{C}\{^{1}\text{H}\} \ NMR \ spectrum \ of \ [Ag_{4}\textbf{(2a)}](PF_{6})_{4} \ (150 \ MHz, \ CD_{3}CN).$

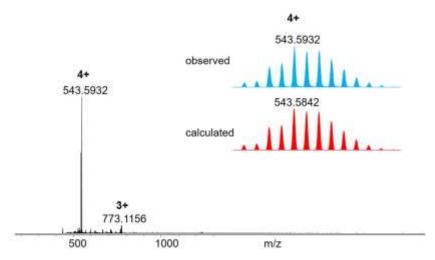
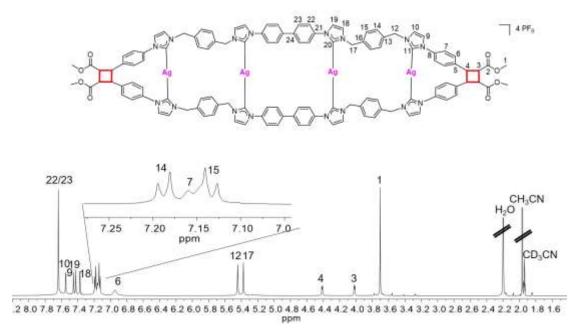
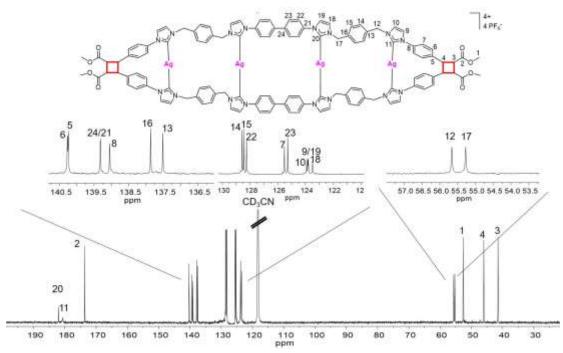




Fig. S18 HR-ESI mass spectrum (positive ions) of [Ag₄(2a)](PF₆)₄.

Fig. S19 ¹H NMR spectrum of [Ag₄(**2b**)](PF₆)₄ (600 MHz, CD₃CN).

Fig. S20 13 C $\{^{1}$ H $\}$ NMR spectrum of [Ag₄(**2b**)](PF₆)₄ (150 MHz, CD₃CN).

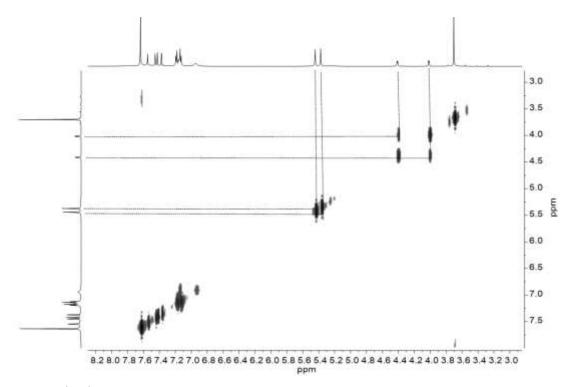


Fig. S21 1 H- 1 H COSY NMR spectrum of [Ag₄(2b)](PF₆)₄ (600 MHz, CD₃CN).

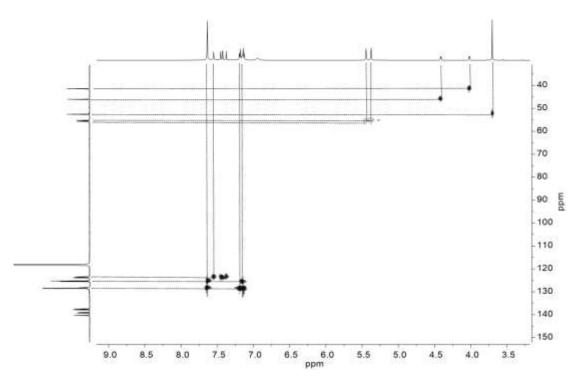


Fig. S22 ¹H-¹³C HSQC NMR spectrum of [Ag₄(2b)](PF₆)₄ (600 MHz, CD₃CN).

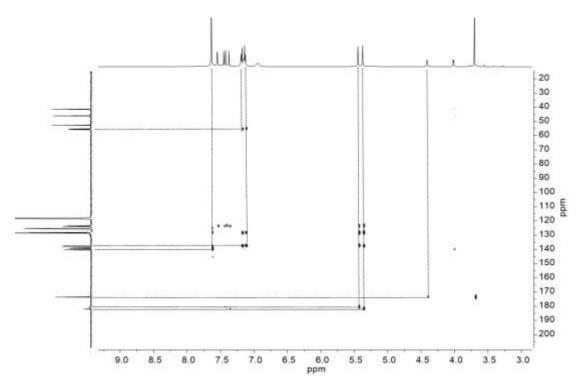


Fig. S23 $^{1}\text{H-}^{13}\text{C}$ HMBC NMR spectrum of [Ag₄(2b)](PF₆)₄ (600 MHz, CD₃CN).

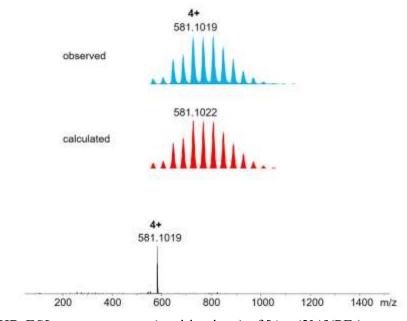
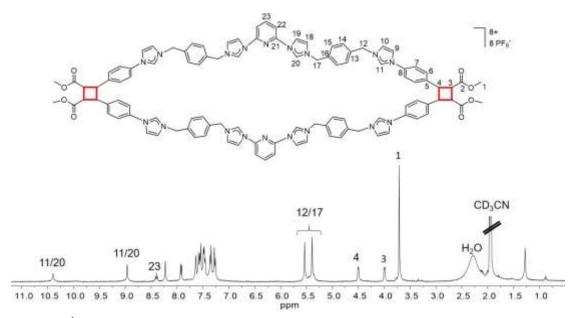
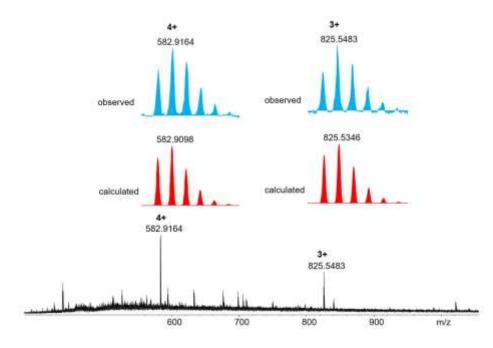
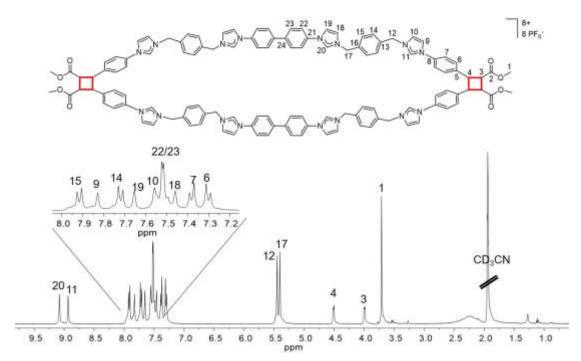
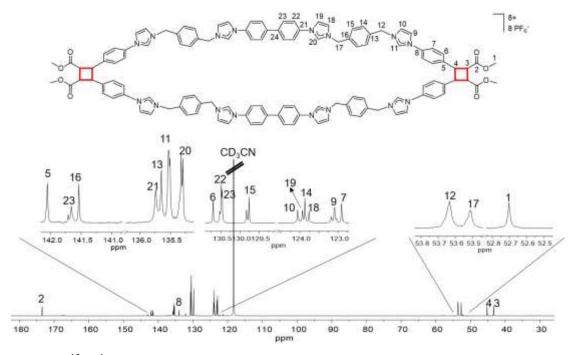



Fig. S24 HR-ESI mass spectrum (positive ions) of [Ag₄(2b)](PF₆)₄.

Fig. S25 ¹H NMR spectrum of H₈-**2a**(PF₆)₈ (400 MHz, CD₃CN).

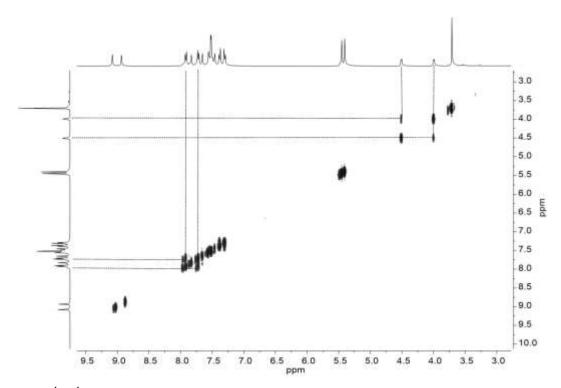

Fig. S26 HR-ESI mass spectrum (positive ions) of H₈-2a(PF₆)₈.

Fig. S27 ¹H NMR spectrum of H₈-**2b**(PF₆)₈ (400 MHz, CD₃CN).

Fig. S28 13 C 1 H 1 NMR spectrum of H₈-**2b**(PF₆)₈ (150 MHz, CD₃CN).

Fig. S29 ¹H-¹H COSY NMR spectrum of H₈-**2b**(PF₆)₈ (600 MHz, CD₃CN).

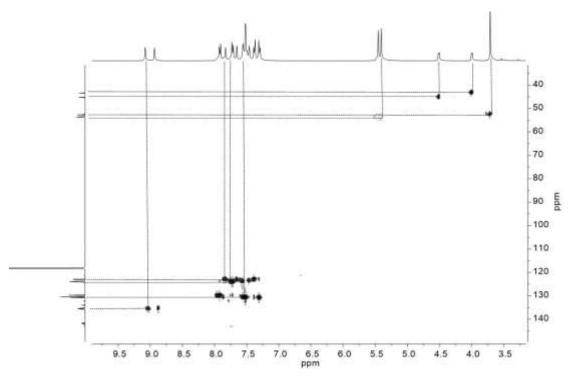


Fig. S30 $^{1}\text{H-}^{13}\text{C}$ HSQC NMR spectrum of $H_{8}\text{-}2b(PF_{6})_{8}$ (600 MHz, CD₃CN).

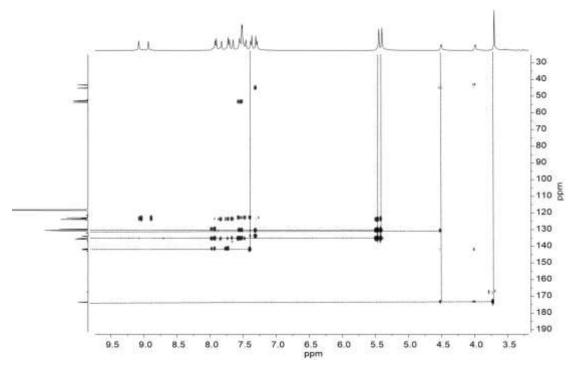


Fig. S31 $^1\text{H-}^{13}\text{C}$ HMBC NMR spectrum of $H_8\text{-}2b(PF_6)_8$ (600 MHz, CD₃CN).

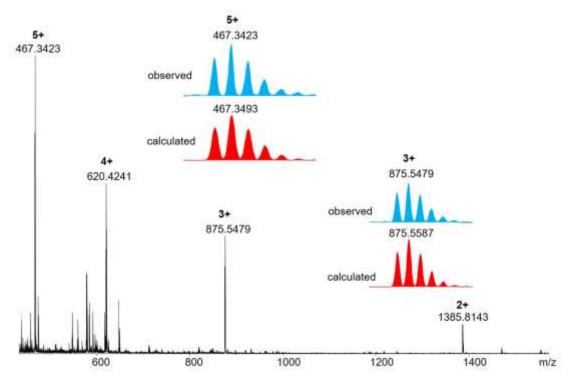


Fig. S32 HR-ESI mass spectrum (positive ions) of H_8 -2b(PF₆)₈.

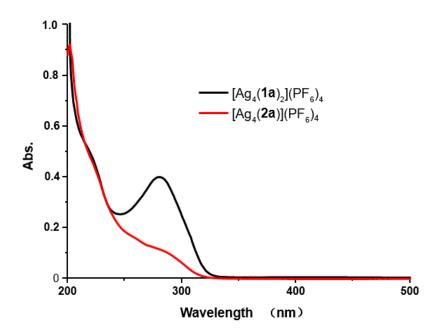
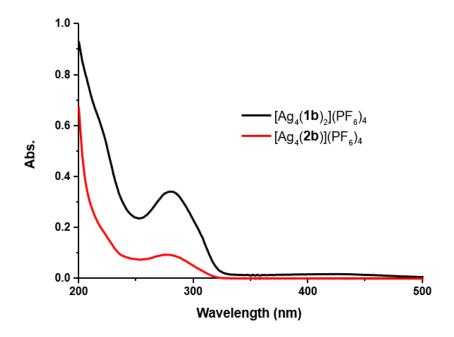
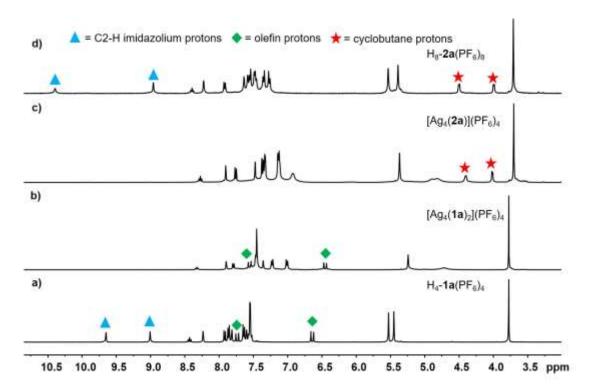
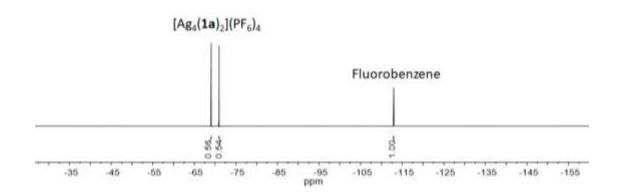




Fig. S33 UV-Vis spectra of $[Ag_4(1a)_2](PF_6)_4$ (5 μ M) in CH₃CN before (dark line) and after (red line) photoreaction.


Fig. S34 UV-Vis spectra of $[Ag_4(1b)_2](PF_6)_4$ (5 μ M) in CH₃CN before (dark line) and after (red line) photoreaction.

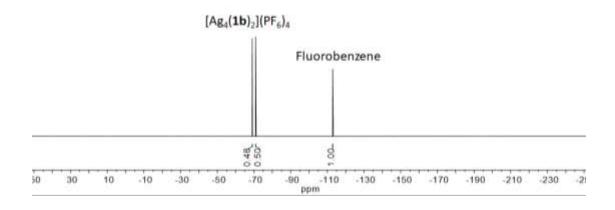

Fig. S35 Partial ¹H NMR spectra (400 MHz, 298 K) in CD₃CN of (a) tetrakisimidazolium salt H₄-1a(PF₆)₄, (b) complex [Ag₄(1a)₂](PF₆)₄ before irradiation, (c) complex [Ag₄(2a)](PF₆)₄ obtained after irradiation, (d) octakisimidazolium salt H₈-2a(PF₆)₈.

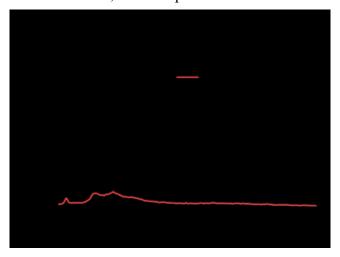
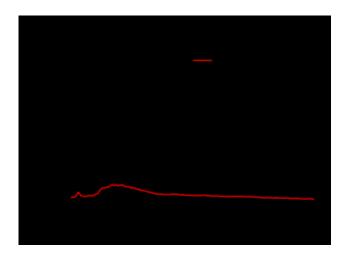
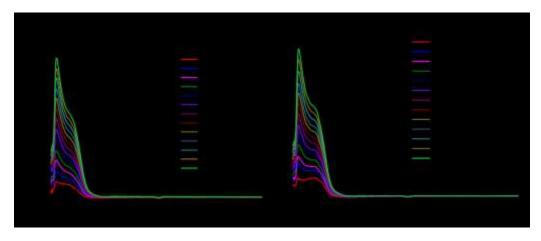
Fig. S36 Partial ¹H NMR spectra (400 MHz, 298 K) in CD₃CN of tetrakisimidazolium salt H₄-**1a**(PF₆)₄ (a) before and (b) after irradiation.

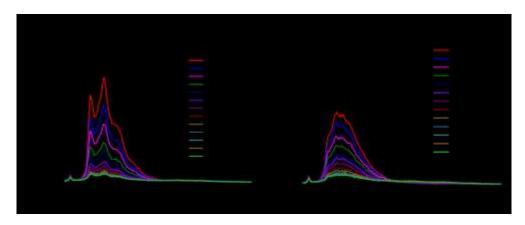
Fig. S37 Partial ¹⁹F NMR spectra (400 MHz, 298 K) in DMSO- d_6 of [Ag₄(**1a**)₂](PF₆)₄, with 24 equiv. fluorobenzene as internal standard.

Fig. S38 Partial ¹⁹F NMR spectra (400 MHz, 298 K) in DMSO- d_6 of [Ag₄(**1b**)₂](PF₆)₄, with 24 equiv. fluorobenzene as internal standard.

4. UV-Vis, fluorescence and ¹H NMR titration studies on the recognition of aromatic sulfonates

Stock solutions of **G8**, **G9** (10 μ M) and H₈-**2a**(PF₆)₈ (60 mM) were prepared in DMSO to each measurement, respectively. A solution of **G8** or **G9** (2.4 mL) was added to the quartz cell and then the spectrum was recorded at room temperature when excited at 260 nm. An aliquot of a H₈-**2a**(PF₆)₈ solution (4 μ L, 0.1 equiv.) was added to the solution of **G8** or **G9**, and the spectra were recorded.


Fig. S39 Fluorescence spectra of sodium naphthalene-2,6-disulfonate G8 ($\lambda_{ex} = 260$ nm, $c = 15 \mu M$) with and without addition of 1.0 equiv. H₈-2a(PF₆)₈ in DMSO.

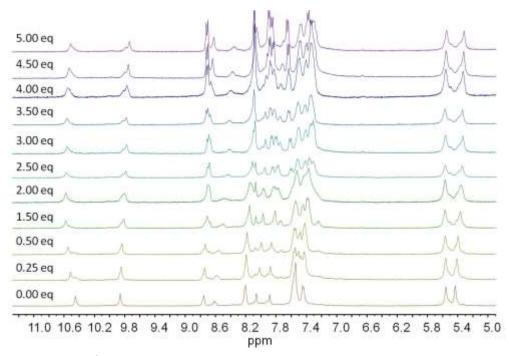

Fig. S40 Fluorescence spectra of sodium naphthalene-1,6-disulfonate **G9** ($\lambda_{\text{ex}} = 260 \text{ nm}$, $c = 15 \,\mu\text{M}$) with and without addition of 1.0 equiv. H₈-2a(PF₆)₈ in DMSO.

Fig. S41 UV-Vis titration of (a) **G8** and (b) **G9** with gradual addition of H_8 -2a(PF₆)₈ in DMSO.

Fig. S42 Fluorescence titration of (a) **G8** ($\lambda_{ex} = 260$ nm, $c = 10 \mu M$) and (b) **G9** ($\lambda_{ex} = 260$ nm, $c = 10 \mu M$) with gradual addition of H₈-2a(PF₆)₈ in DMSO.

Fig. S43 Partial ¹H NMR spectra of H_8 -**2a**(PF₆)₈ (3.4 mM) upon titration **G9** in DMSO- d_6 at room temperatre.

5. References

(1) L. Zhang, R. Das, C.-T. Li, Y.-Y. Wang, F. E. Hahn, K. Hua, L.-Y. Sun and Y.-F. Han, C3-Symmetric Assemblies from Trigonal Polycarbene Ligands and M^I Ions for the Synthesis of Three-Dimensional Polyimidazolium Cations, *Angew. Chem. Int. Ed.*, 2019, **58**, 13360–13364.