Supporting Information

Pd-catalyzed tandem $\mathrm{C}-\mathrm{C} / \mathrm{C}-\mathrm{O} / \mathrm{C}-\mathrm{H}$ single bond cleavage of 3-allyloxybenzocyclobutenols

Tian-Mu Tang, Min Liu, Hongli Wu, Ting Gou, Xi Hu, Bi-Qin Wang, Ping Hu, Feijie Song* and Genping Huang*

Table of Contents

I. General information S3
II. Synthesis and characterization of benzocyclobutenols S3
III. Optimization of the reaction of benzocyclobutenol 1a S16
IV. Optimization of the asymmetric synthesis of 2a S17
V. General procedure for the reactions of benzocyclobutenols. S22
VI. Characterizations of products $\mathbf{2 , 5}$ and $\mathbf{6}$ S23
VII. Control experiments S33
VIII. Mechanistic studies by DFT calculations. S37
IX. Synthetic applications S43
X. X-ray data of compounds $\mathbf{2 f}, \mathbf{2 g}$ and $\mathbf{6 b}$ S47
XI. References S50
XII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the described compounds S52

I. General Information

Unless otherwise mentioned, all reactions were carried out under an inert atmosphere. Unless otherwise noted, all of the reagents were purchased from commercial suppliers and used without further purification. THF was dried by filtration through a Solvent Purification System. $\mathrm{Et}_{2} \mathrm{O}$ and 1,4-dioxane were dried by distillation from sodium and benzophenone and stored in the glove box.

NMR spectra were obtained on a Varian 400 M or 600 M spectrometer. The ${ }^{1} \mathrm{H}$ NMR (400 MHz or 600 MHz) chemical shifts were measured relative to the residual CDCl_{3} as the internal reference $\left(\mathrm{CDCl}_{3}: \delta=7.26 \mathrm{ppm}\right)$. The ${ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$ or $151 \mathrm{MHz})$ chemical shifts were given using CDCl_{3} as the internal standard $\left(\mathrm{CDCl}_{3}: \delta\right.$ $=77.0 \mathrm{ppm})$. Coupling constants were reported in Hertz (Hz). Data for ${ }^{1} \mathrm{H}$ NMR spectra were reported as follows: chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet,} \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{m}=$ multiplet), coupling constant (Hz), and integration. For characterization of diastereomeric mixtures, *denotes minor diastereoisomer, ${ }^{+}$denotes overlap of signals from both diastereoisomers. High-resolution mass spectra (HRMS) were obtained with a Waters Q-TOF Premier or Waters UPLC_QTof spectrometer. Elemental analysis data was obtained with Elementar UNICUBE. X-Ray single-crystal diffraction data were collected on a Rigaku XtaLAB Synergy diffractometer. Melting points were determined with $\mathrm{SGW}_{\circledast}$ X-4 apparatus.

II. Synthesis and characterization of benzocyclobutenols

Grignard reagent was added dropwise to a solution of benzocyclobutenone in THF at $0{ }^{\circ} \mathrm{C}$ and the resulting solution was stirred at the indicated temperature. After the completion of the reaction as monitored by TLC, the reaction was quenched with water and extracted with EtOAc for three times. The combined organic phases were
washed with brine and dried over anhydrous MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography on silica gel to afford the desired benzocyclobutenols 1. Benzocyclobutenols $\mathbf{8}^{1}$ and $\mathbf{1 1}^{2}$ are known compounds and their characterization data are consistent with those reported in the literature.

Benzocyclobutenones were synthesized through IBX-promoted oxidation of the corresponding secondary benzocyclobutenols, ${ }^{3}$ which were prepared according to the procedure reported by Dong. ${ }^{4}$ Benzocyclobutenones SI-1, and SI-3 to SI-11 are known compounds and their characterization data are consistent with those reported in the literature. ${ }^{4,5}$

SI-1

SI-2

SI-3

SI-4

SI-5

SI-6

SI-7

SI-8

SI-9

SI-10

SI-11

2-Methyl-5-((2-methylallyl)oxy)bicyclo[4.2.0]octa-1,3,5-trien-7-one (SI-2)

Yellow liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 2.24$ (s, 3H), 1.82 (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.45,150.29,148.51,140.51,138.60,131.55$, $124.61,116.83,112.33,75.12,49.81,19.20,16.33$.

Following the general procedure, benzocyclobutenone SI-1 ($1.88 \mathrm{~g}, 10.0 \mathrm{mmol}$), $\operatorname{EtMgBr}(1.0 \mathrm{M}$ in THF, $15.0 \mathrm{~mL}, 15.0 \mathrm{mmol}$) and THF (50.0 mL) were used. The reaction was stirred at room temperature for 3 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded 1a as a yellow liquid ($1.61 \mathrm{~g}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{dd}, J=8.4$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82($ brs, 1 H$), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H})$, $1.82(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.70,143.19$, 140.84, 134.36, 130.58, 116.14, 112.74, 112.28, 80.97, 72.26, 44.92, 32.09, 19.34, 9.22. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 241.1199; found 241.1207.

7-Methyl-5-((2-methylallyl)oxy)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1b)

Following the general procedure, benzocyclobutenone SI-1 ($0.19 \mathrm{~g}, 1.0 \mathrm{mmol}$), $\mathrm{CH}_{3} \mathrm{MgBr}$ (3.0 M in THF, $0.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and THF (3.0 mL) were used. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{1 b}$ as a light yellow liquid (0.09 $\mathrm{g}, 40 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19$ (dd, $J=7.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.74-6.70 (m, 2H), $5.09(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 1.83$ $(\mathrm{s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.74, 142.72, 141.03, 134.77, 130.84, 116.27, 113.75, 112.33, 77.76, 72.66, 47.98, 26.52, 19.40. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 227.1043; found 227.1051.

7-Isopropyl-5-((2-methylallyl)oxy)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1c)

Following the general procedure, benzocyclobutenone SI-1 ($0.19 \mathrm{~g}, 1.0 \mathrm{mmol}$), ${ }^{i} \operatorname{PrMgBr}(1.0 \mathrm{M}$ in THF, 1.5 mL , 1.5 mmol) and THF (5.0 mL) were used. The reaction was stirred at room temperature for 2.5 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=40: 1$) afforded $\mathbf{1 c}$ as a yellow liquid ($0.21 \mathrm{~g}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{dd}, J=8.3,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (s, 1H), 4.96 (s, 1H), $4.50(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}$, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.61,143.74,140.83$, $134.73,130.51,116.20,112.33,111.89,84.16,72.01,42.95,35.55,19.38,17.87$, 17.66. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 255.1356; found 255.1348.

7-Cyclopropyl-5-((2-methylallyl)oxy)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1d)

Following the general procedure, benzocyclobutenone SI-1 ($0.19 \mathrm{~g}, 1.0 \mathrm{mmol}$), cyclopropylmagnesium bromide (1.0 M in THF, $1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and THF (5.0 mL) were used. The reaction was stirred at room temperature for 2 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $1 \mathbf{d}$ as a yellow liquid ($0.11 \mathrm{~g}, 47 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.18 (dd, $J=8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ ($\mathrm{s}, 1 \mathrm{H}$), 4.96 ($\mathrm{s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.67 (brs, 1 H), $1.83(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.74-0.67(\mathrm{~m}, 1 \mathrm{H}), 0.56-0.47(\mathrm{~m}$, 2H), $0.29-0.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.60, 143.66, 140.86,
133.11, 130.69, 116.14, 112.34, 112.21, 81.39, 72.17, 45.18, 19.38, 18.95, 2.32, 2.16. HRMS (ESI^{+}) for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 253.1199; found 253.1206.

7-Benzyl-5-((2-methylallyl)oxy)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1e)

Following the general procedure, benzocyclobutenone SI-1 ($0.38 \mathrm{~g}, 2.0 \mathrm{mmol}$), benzylmagnesium bromide (1.0 M in THF, $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) and THF (7.0 mL) were used. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=40: 1$) afforded $\mathbf{1 e}$ as a yellow liquid ($0.28 \mathrm{~g}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.32(\mathrm{~m}, 4 \mathrm{H})$, 7.31-7.27 (m, 1H), $7.24(\mathrm{dd}, J=8.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=13.7 \mathrm{~Hz}$, 1 H), 3.03 ($\mathrm{d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.81(\mathrm{~s}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.88,142.66,140.92,137.31,134.26,130.85,130.04,128.06,126.47,116.15$, 113.15, 112.21, 79.79, 72.51, 45.30, 44.92, 19.33. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}$ $+\mathrm{Na}]^{+}$: calcd 303.1356; found 303.1355.

7-Ethyl-2-methyl-5-((2-methylallyl)oxy)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1f)

Following the general procedure, benzocyclobutenone SI-2 ($0.61 \mathrm{~g}, 3.0 \mathrm{mmol}$), $\operatorname{EtMgBr}(2.0 \mathrm{M}$ in THF, $2.3 \mathrm{~mL}, 4.5 \mathrm{mmol}$) and THF (9.0 mL) were used. The reaction was stirred at room temperature for 3 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=40: 1$) afforded $\mathbf{1 f}$ as a colorless liquid ($0.31 \mathrm{~g}, 44 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.45(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (brs, 1H), $2.13(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.64,141.34,140.94,133.80$, 130.81, 125.48, 113.33, 112.01, 80.09, 72.30, 43.60, 32.09, 19.23, 15.68, 9.16. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: calcd 255.1356; found 255.1347.

7-Ethyl-3-methyl-5-((2-methylallyl)oxy)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1g)

Following the general procedure, benzocyclobutenone SI-3 ($0.22 \mathrm{~g}, 1.1 \mathrm{mmol}$), $\operatorname{EtMgBr}(2.0 \mathrm{M}$ in THF, $0.9 \mathrm{~mL}, 1.8 \mathrm{mmol})$ and THF (3.6 mL) were used. The reaction was stirred at room temperature for 3 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=40: 1$) afforded $\mathbf{1 g}$ as a colorless liquid ($0.21 \mathrm{~g}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.60(\mathrm{~s}, 1 \mathrm{H})$, $6.56(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.26(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (brs, 1H), 2.33 (s, 3H), $2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.69,143.05,141.03,140.99,131.19,116.86,113.84$, 112.13, 80.64, 72.43, 44.71, 32.22, 21.97, 19.35, 9.26. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}:$calcd 255.1356; found 255.1349.

7-Ethyl-5-(2-methylenebutoxy)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1h)

Following the general procedure, benzocyclobutenone SI-4 ($2.02 \mathrm{~g}, 10.0 \mathrm{mmol}$), $\mathrm{EtMgBr}(2.0 \mathrm{M}$ in THF, $7.5 \mathrm{~mL}, 15 \mathrm{mmol}$) and THF (30.0 mL) were used. The reaction was stirred at room temperature for 1.5 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=10: 1$) afforded $\mathbf{1 h}$ as a light yellow liquid ($1.71 \mathrm{~g}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{dd}, J=$
$7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, 1 H), 2.73 (brs, 1H), 2.16 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.86, 146.46, 143.21, $134.41,130.64,116.13,112.82,110.40,81.05,71.62,45.00,32.15,25.77,11.92,9.23$. HRMS (ESI^{+}) for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 255.1356; found 255.1358.

7-Ethyl-5-((2-phenylallyl)oxy)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1i)

Following the general procedure, benzocyclobutenone SI-5 ($0.83 \mathrm{~g}, 3.3 \mathrm{mmol}$), $\operatorname{EtMgBr}(1.0 \mathrm{M}$ in THF, $5.0 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and THF (10.0 mL) were used. The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 12 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1)$ afforded $1 \mathbf{i}$ as a yellow liquid $(0.80$ $\mathrm{g}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.07$ $(\mathrm{d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{brs}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) δ 152.70, 143.26, 143.21, 138.32, 134.49, $130.76,128.43,127.93,126.01,116.43,114.33,113.30,81.17,70.60,45.08,32.23$, 9.20. HRMS (ESI^{+}) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: calcd 303.1356; found 303.1360.

7-Methyl-5-((2-phenylallyl)oxy)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1j)

Following the general procedure, benzocyclobutenone SI-5 ($0.50 \mathrm{~g}, 2.0 \mathrm{mmol}$), $\mathrm{MeMgBr}(3.0 \mathrm{M}$ in 2-MeTHF, $1.0 \mathrm{~mL}, 3.0 \mathrm{mmol})$ and THF (6.0 mL) were used. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2 h . Purification by column chromatography on silica
gel (petroleum ether : dichloromethane $=2: 3$) afforded $\mathbf{1} \mathbf{j}$ as a yellow liquid $(0.22 \mathrm{~g}$, 41% yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.61(\mathrm{~s}$, $1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.20\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$), 2.44 (brs, 1H), 1.73 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.58,143.21,142.75,138.28,134.86,130.89,128.46,127.95$, $125.98,116.49,114.32,114.14,77.85,70.86,48.04,26.72$. HRMS (ESI+) for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}:$calcd 289.1199; found 289.1202.

5-(Allyloxy)-7-ethylbicyclo[4.2.0]octa-1,3,5-trien-7-ol (1k)

Following the general procedure, benzocyclobutenone SI-6 ($0.10 \mathrm{~g}, 0.6 \mathrm{mmol}$), $\operatorname{EtMgBr}(2.0 \mathrm{M}$ in THF, $0.5 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and THF (2.5 mL) were used. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1)$ afforded $\mathbf{1 k}$ as a yellow liquid $(0.10 \mathrm{~g}, 82 \%$ yield). $\delta 7.20$ (dd, $J=8.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.08-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.24(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.56(\mathrm{~m}$, 2 H), 3.30 (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (brs, 1H), $2.08-1.99$ $(\mathrm{m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.72,143.23,134.39,133.37,130.72,117.19,116.26,113.09,81.11,69.65,45.08$, 32.20, 9.23. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 227.1043; found 227.1050.

5-(Cinnamyloxy)-7-ethylbicyclo[4.2.0]octa-1,3,5-trien-7-ol (11)

Then following the general procedure, compound SI-7 ($0.13 \mathrm{~g}, 0.5 \mathrm{mmol}$), EtMgBr (2.0 M in THF, $0.4 \mathrm{~mL}, 0.8 \mathrm{mmol}$) and THF (3.0 mL) were used. The reaction was
stirred at $-20^{\circ} \mathrm{C}$ for 2 h . Purification by column chromatography on neutral aluminum oxide (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{1 1}$ as a light yellow liquid ($0.10 \mathrm{~g}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (dd, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.44-6.37(\mathrm{~m}, 1 \mathrm{H}), 4.86-$ $4.75(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{brs}, 1 \mathrm{H})$, $2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.79,143.26,136.43,134.37,132.61,130.81,128.54,127.81$, 126.52, 124.62, 116.32, 113.28, 81.18, 69.62, 45.14, 32.25, 9.29.

(E)-5-(But-2-en-1-yloxy)-7-ethylbicyclo[4.2.0]octa-1,3,5-trien-7-ol (1m)

Following the general procedure, benzocyclobutenone SI-8 ($0.56 \mathrm{~g}, 3.0 \mathrm{mmol}$), $\operatorname{EtMgBr}(1.0 \mathrm{M}$ in THF, $4.5 \mathrm{~mL}, 4.5 \mathrm{mmol})$ and THF (15.0 mL) were used. The reaction was stirred at room temperature for 1.5 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{1 m}$ as a yellow liquid ($0.40 \mathrm{~g}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19$ (dd, $J=8.4$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.79(\mathrm{~m}, 1 \mathrm{H})$, $5.73-5.66(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, 1H), 3.04 (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (brs, 1H), 2.08 - 1.99 (m, 1H), $1.95-1.86$ (m, $1 \mathrm{H}), 1.75(\mathrm{dd}, J=6.4,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.90,143.19,134.32,130.71,130.12,126.22,116.07,113.23,81.15$, 69.75, 45.05, 32.24, 17.83, 9.24. HRMS (ESI $)$ for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 241.1199; found 241.1205.
(E)-7-Benzyl-5-(but-2-en-1-yloxy)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1n)

Following the general procedure, benzocyclobutenone SI-8 ($0.38 \mathrm{~g}, 2.0 \mathrm{mmol}$),
benzylmagnesium bromide (1.0 M in THF, $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) and THF (10.0 mL) were used. The reaction was stirred at room temperature for 1 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20$: 1) afforded $1 \mathbf{n}$ as a yellow liquid ($0.67 \mathrm{~g},>99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.33-7.22(\mathrm{~m}, 6 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.82(\mathrm{~m}$, $1 \mathrm{H}), 5.76-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=11.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=11.7,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43$ (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{brs}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.77,142.64,137.35,134.26,130.77,130.05,130.02,127.97$, 126.36, 126.18, 115.98, 113.08, 79.81, 69.70, 45.36, 44.79, 17.74. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 303.1356; found 303.1360.

(E)-5-(But-2-en-1-yloxy)-7-isopropylbicyclo[4.2.0]octa-1,3,5-trien-7-ol (10)

Following the general procedure, benzocyclobutenone SI-8 ($0.38 \mathrm{~g}, 2.0 \mathrm{mmol}$), ${ }^{i} \operatorname{PrMgBr}(1.0 \mathrm{M}$ in THF, $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) and THF (10.0 mL) were used. The reaction was stirred at room temperature for 1 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{1 0}$ as a yellow liquid ($0.34 \mathrm{~g}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19$ (dd, $J=8.4$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.78(\mathrm{~m}, 1 \mathrm{H})$, $5.72-5.64(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.46(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=14.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=6.4,1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.70,143.69$, $134.63,130.53,129.93,126.17,116.06,112.33,84.18,69.33,42.78,35.55,17.93$, 17.83, 17.64. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 255.1356; found 255.1354.

(E)-5-(But-2-en-1-yloxy)-7-cyclopropylbicyclo[4.2.0]octa-1,3,5-trien-7-ol (1p)

Following the general procedure, benzocyclobutenone SI-8 ($0.38 \mathrm{~g}, 2.0 \mathrm{mmol}$), cyclopropylmagnesium bromide (1.0 M in THF, $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) and THF (10.0 mL) were used. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=8: 1$) afforded $\mathbf{1 p}$ as a yellow liquid ($0.39 \mathrm{~g}, 84 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.73-$ $5.66(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66$ (brs, 1H), 1.74 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.70-0.64(\mathrm{~m}, 1 \mathrm{H})$, $0.55-0.46(\mathrm{~m}, 2 \mathrm{H}), 0.25-0.20(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.67$, $143.61,133.11,130.69,130.03,126.20,116.01,112.53,81.42,69.50,45.06,19.02$, 17.80, 2.34, 2.23. HRMS (ESI^{+}) for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: calcd 253.1199; found 253.1194.

(E)-5-(But-2-en-1-yloxy)-7-phenylbicyclo[4.2.0]octa-1,3,5-trien-7-ol (1q)

Following the general procedure, benzocyclobutenone SI-8 ($0.56 \mathrm{~g}, 3.0 \mathrm{mmol}$), $\operatorname{PhMgBr}(1.0 \mathrm{M}$ in THF, $4.5 \mathrm{~mL}, 4.5 \mathrm{mmol})$ and $\mathrm{THF}(15.0 \mathrm{~mL})$ were used. The reaction was stirred at room temperature for 1.5 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=40: 1$) afforded $\mathbf{1 q}$ as a yellow liquid ($0.55 \mathrm{~g}, 69 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.43(\mathrm{~m}$, $2 H), 7.38-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.71-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.58-5.51(\mathrm{~m}$, $1 \mathrm{H}), 4.54-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.17$ (m, 1H), $3.57-3.45$ (m, 2H), 3.19 (brs, 1H), $1.68(\mathrm{dd}, J=6.3,1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.66,144.20,143.72$, $133.18,131.33,130.16,128.25,127.25,126.08,125.30,116.12,114.51,81.14,70.06$, 50.44, 17.73. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: calcd 289.1199; found 289.1198
(\boldsymbol{E})-5-(But-2-en-1-yloxy)-7-(2,5-dimethylphenyl)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1r)

Following the general procedure, benzocyclobutenone SI-8 ($0.38 \mathrm{~g}, 2.0 \mathrm{mmol}$), 2,5-dimethylphenylmagnesium bromide (1.0 M in THF, $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{O}$ $(6.0 \mathrm{~mL})$ were used. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=40: 1$) afforded $\mathbf{1 r}$ as a yellow liquid ($0.39 \mathrm{~g}, 53 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H})$, 7.12 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.76-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.63(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~d}$, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$, 1.74 (dd, $J=6.3,1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.93$, 143.43, 140.37, $134.59,133.85,133.67,131.35,131.18,130.21,128.51,128.48,126.08,116.44$, 112.58, 83.10, 69.55, 48.35, 20.94, 19.69, 17.84. HRMS (ESI $)$ for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+}$: calcd 317.1512; found 317.1506.

(E)-5-(But-2-en-1-yloxy)-7-(3-methoxyphenyl)bicyclo[4.2.0]octa-1,3,5-trien-7-ol

 (1s)

Following the general procedure, benzocyclobutenone SI-8 ($0.56 \mathrm{~g}, 3.0 \mathrm{mmol}$), 3-methoxyphenylmagnesium bromide (1.0 M in THF, $4.5 \mathrm{~mL}, 4.5 \mathrm{mmol}$) and THF $(15.0 \mathrm{~mL})$ were used. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=40: 1$) afforded $\mathbf{1 s}$ as a yellow liquid ($0.59 \mathrm{~g}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.21(\mathrm{~m}, 2 \mathrm{H})$, $7.11-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 3 \mathrm{H}), 5.72-5.64$
$(\mathrm{m}, 1 \mathrm{H}), 5.61-5.52(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.50(\mathrm{q}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.05$ (brs, 1 H), 1.67 (dd, $J=6.4,1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.56,152.57,145.91,143.69,133.05,131.33,130.20,129.29$, $126.08,117.75,116.11,114.34,112.85,111.03,81.07,69.96,55.15,50.31,17.74$.
(E)-5-(But-2-en-1-yloxy)-7-(4-methoxyphenyl)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1t)

Following the general procedure, benzocyclobutenone SI-8 ($0.56 \mathrm{~g}, 3.0 \mathrm{mmol}$), 4-methoxyphenylmagnesium bromide (1.0 M in THF, $4.5 \mathrm{~mL}, 4.5 \mathrm{mmol}$) and THF $(15.0 \mathrm{~mL})$ were used. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=25: 1$) afforded $\mathbf{1 t}$ as a yellow liquid ($0.49 \mathrm{~g}, 56 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.63$ $(\mathrm{m}, 1 \mathrm{H}), 5.62-5.53(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.51(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=6.3,1.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 158.78,152.70,143.66,136.52,133.37,131.28,130.16,126.66,126.16,116.16$, 114.41, 113.57, 81.01, 70.10, 55.25, 50.41, 17.77. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}$ $+\mathrm{Na}]^{+}$: calcd 319.1305; found 319.1307.

(E)-5-(But-2-en-1-yloxy)-7-(thiophen-2-yl)bicyclo[4.2.0]octa-1,3,5-trien-7-ol (1u) ${ }^{6}$

${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in THF, $1.2 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added dropwise to a solution of o-bromothiophene $(0.29 \mathrm{~mL}, 3.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(6.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The solution was warmed to and stirred at room temperature for 1 h . The mixture was re-cooled to -78 ${ }^{\circ} \mathrm{C}$ after the appearance of white solid. A solution of benzocyclobutenone SI-8 (0.38 g , $2.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(6.0 \mathrm{~mL})$ was then added dropwise. After stirring at $-78{ }^{\circ} \mathrm{C}$ for another 1 h , the reaction was warmed to room temperature and quenched with
saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous phase was extracted with EtOAc for three times. The combined organic phases were washed with brine, dried over anhydrous MgSO_{4}, filtered, and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) to afford benzocyclobutenol 1u as an orange liquid ($0.38 \mathrm{~g}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.82$ - $6.78(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.64-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=11.7,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.39(\mathrm{dd}, J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15(\mathrm{~s}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.54$, $148.85,143.17,133.15,131.65,130.26,126.63,126.08,124.72,123.81,116.21$, $114.40,78.75,70.13,51.12,17.77$. HRMS (ESI^{+}) for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 295.0763; found 295.0761.

III. Optimization of the reaction of benzocyclobutenol 1a

To an oven-dried Schlenk tube with a stirring bar was successively added catalyst, ligand, base, and benzocyclobutenol $\mathbf{1 a}(43.7 \mathrm{mg}, 0.2 \mathrm{mmol})$. The tube was evacuated and backfilled with inert gas for three times and solvent $(1.0 \mathrm{~mL})$ was then added. The tube was directly placed in an oil bath at $110{ }^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc for three times. The combined organic phases were washed with brine and dried over anhydrous MgSO_{4}. The solvent was evaporated and the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR spectrometer.

Table S1. Optimization of the reaction of benzocyclobutenol 1a.

${ }^{a}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using $1,1,2,2$-tetrachloroethane as the internal standard. ${ }^{b}$ NMR yield of $\mathbf{3}$ was given in the parenthesis. ${ }^{c} 85 \%$ of $\mathbf{1 a}$ was unreacted as determined by crude ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{d}$ At $80{ }^{\circ} \mathrm{C}$. ${ }^{e}$ Isolated yield was given in the parenthesis. dppm $=$ bis(diphenylphosphino)methane, dppe $=$ 1,2-bis(diphenylphosphino)ethane, dppp $=1,3$-bis(diphenylphosphino)propane, $\mathrm{dppb}=$ 1,4-bis(diphenylphosphino)butane, $\mathrm{dppf}=1,1$ '-Bis(diphenylphosphino)ferrocene.

IV. Optimization of the asymmetric synthesis of 2a

A solution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 1,4-dioxane $(4.0 \mathrm{mM})$ was prepared, stored in the glove box and used for the catalytic reaction. To an oven-dried Schlenk tube with a stirring
bar was successively added ligand ($8.0 \mu \mathrm{~mol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(21.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, and benzocyclobutenol 1a ($43.7 \mathrm{mg}, 0.2 \mathrm{mmol}$). The tube was evacuated and backfilled with inert gas for three times. After the addition of $\mathrm{Pd}(\mathrm{OAc})_{2}(1.0 \mathrm{~mL}, 4.0 \mu \mathrm{~mol})$, the tube was directly placed in an oil bath at $110^{\circ} \mathrm{C}$ and stirred for 3 h . The mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc for three times. The combined organic phases were washed with brine and dried over anhydrous MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) to afford 2a. Pure 2a was then analyzed by chiral HPLC to determine the enantiopurity.

Table S2. Optimization of the asymmetric synthesis of $\mathbf{2 a}{ }^{a}$

${ }^{a}$ HPLC analysis: Chiracel OD, eluent hexane:i-propanol $95 \%: 5 \%$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R} 1}=7.4$ min and $\mathrm{t}_{\mathrm{R} 2}=8.1 \mathrm{~min}$.
mV

Figure S1 HPLC trace of racemic 2a

Figure S2 HPLC trace of 2a obtained by using (R)-segphos as the ligand
mV

Peak Table
Detector A 254nm

Peak\#	Ret. Time	S/N	Noise	Area	Height	Area $\%$
1	7.368	325.70	1479.81	5887006	481977	49.560
2	8.083	278.78	1479.81	591439	41542	50.440
Total				11878445	894519	100.000

Figure S3 HPLC trace of 2a obtained by using (R)-synphos as the ligand mV

Figure S4 HPLC trace of 2a obtained by using (R)-H8-binap as the ligand
mV

Figure S5 HPLC trace of 2a obtained by using (R)-MeO-biphep as the ligand

Figure S6 HPLC trace of 2a obtained by using (R)-binap as the ligand
mV

Figure S7 HPLC trace of 2a obtained by using (R)-tol-binap as the ligand mV

Figure S8 HPLC trace of 2a by using (R)-dm-binap as the ligand

V. General procedure for the reactions of benzocyclobutenols

General procedure A: synthesis of meta- β-keto phenols

A solution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 1,4-dioxane $(4.0 \mathrm{mM})$ was prepared, stored in the glove box and used for the catalytic reaction. To an oven-dried Schlenk tube with a stirring bar was successively added dppe ($3.2 \mathrm{mg}, 8.0 \mu \mathrm{~mol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(21.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, and
benzocyclobutenol $1(0.2 \mathrm{mmol})$. The tube was evacuated and backfilled with inert gas for three times. After the addition of $\mathrm{Pd}(\mathrm{OAc})_{2}(1.0 \mathrm{~mL}, 4.0 \mu \mathrm{~mol})$, the tube was directly placed in an oil bath at $110{ }^{\circ} \mathrm{C}$ and stirred for 3 h . The mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc for three times. The combined organic phases were washed with brine and dried over anhydrous MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product $\mathbf{2}$ or $\mathbf{5}$.

General procedure B: the distal $\mathbf{C}-\mathbf{C}$ bond cleavage/deallylation cascade

A solution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 1,4-dioxane (5.0 mM) was prepared, stored in the glove box and used for the catalytic reaction. To an oven-dried Schlenk tube with a stirring bar was added $\mathrm{K}_{3} \mathrm{PO}_{4}(21.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, benzocyclobutenol $\mathbf{1}(0.2 \mathrm{mmol})$ and 1,4-dioxane (0.5 mL). After stirring at $110{ }^{\circ} \mathrm{C}$ for 1 h , the tube was cooled to room temperature. $\mathrm{Pd}(\mathrm{OAc})_{2}(0.8 \mathrm{~mL}, 4.0 \mu \mathrm{~mol})$ and dppe $(3.2 \mathrm{mg}, 8.0 \mu \mathrm{~mol})$ were successively added. The resulting solution was stirred at $110{ }^{\circ} \mathrm{C}$ for additional 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the mixture was extracted with EtOAc for three times. The combined organic phases were washed with brine and dried over anhydrous MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product 6 .

VI. Characterizations of products 2, 5 and 6

4-(3-Hydroxyphenyl)-6-methylhept-6-en-3-one (2a)

Following the general procedure A, benzocyclobutenol $\mathbf{1 a}(43.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded 2a as a yellow liquid ($37.6 \mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{brs}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=9.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 3 \mathrm{H})$, 4.69 (s, 1H), 4.58 (s, 1H), 3.89 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=14.8,8.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.57-2.34(\mathrm{~m}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 212.10,156.45,142.90,140.20,129.99,120.65,114.56,114.54,111.96$, 56.73, 39.91, 35.27, 22.79, 7.79. HRMS (ESI $)$ for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 241.1199; found 241.1208.

3-(3-Hydroxyphenyl)-5-methylhex-5-en-2-one (2b)

Following the general procedure A, benzocyclobutenol 1b ($40.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{2 b}$ as a yellow liquid ($37.8 \mathrm{mg}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.50(\mathrm{~m}, 4 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}$, $1 \mathrm{H}), 3.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=14.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=14.9,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 209.73, 156.51, 142.74, 139.72, 130.06, 120.53, 114.67, 114.61, 111.97, 57.63, 39.45, 29.08, 22.75. HRMS (ESI $)$ for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 205.1223; found 205.1215.

4-(3-Hydroxyphenyl)-2,6-dimethylhept-6-en-3-one (2c)

Following the general procedure A, benzocyclobutenol 1c ($46.5 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{2 c}$ as a yellow liquid ($28.5 \mathrm{mg}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.56(\mathrm{brs}, 1 \mathrm{H}), 4.70(\mathrm{~s}$, $1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{dd}, J=14.5,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.12,156.41,142.90,140.16,129.97,120.90,114.54,114.48$,
112.14, 55.48, 40.51, 40.16, 22.82, 18.79, 18.24. HRMS (ESI $)$ for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}$: calcd 233.1536; found 233.1535.

1-Cyclopropyl-2-(3-hydroxyphenyl)-4-methylpent-4-en-1-one (2d)

Following the general procedure A, benzocyclobutenol 1d ($46.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{2 d}$ as a yellow liquid ($26.2 \mathrm{mg}, 57 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 2 \mathrm{H})$, $6.63(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=14.9,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=14.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.03-$ $0.98(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.80-0.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.50,156.48,142.91,140.09,129.95,120.88,114.68,114.49,111.87,57.76$, 39.81, 22.82, 20.62, 12.01, 11.72. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 253.1199; found 253.1207.

3-(3-Hydroxyphenyl)-5-methyl-1-phenylhex-5-en-2-one

1-(3-hydroxyphenyl)-5-methyl-3-phenylhex-5-en-2-one (2e')

Following the general procedure B, benzocyclobutenol $1 \mathbf{e}(56.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=10: 1)$ afforded $\mathbf{2 e}$ and $\mathbf{2} \mathbf{e}^{\prime}$ as an inseparable mixture in $1: 1$ ratio (27.3 mg , 49% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.17(\mathrm{~m}, 9 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=$
$7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.94($ brs, 1 H$), 5.72($ brs, 1 H$), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H})$, $4.02-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 2.83-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.29(\mathrm{~m}$, $2 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.81,207.66,156.29,155.90$, $142.69,142.67,139.84,138.19,135.34,133.77,130.10$, $129.77,129.58,128.91$, 128.56, 128.42, 127.40, 126.97, 121.80, 120.89, 116.48, 114.90, 114.58, 114.13, 112.07, 112.02, 56.00, 55.85, 48.87, 48.69, 39.97, 39.91, 22.66, 22.62. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 281.1536; found 281.1535.

4-(5-Hydroxy-2-methylphenyl)-6-methylhept-6-en-3-one (2f)

Following the general procedure A, benzocyclobutenol $\mathbf{1 f}(46.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $2 \mathbf{2 f}$ as a colorless solid ($29.0 \mathrm{mg}, 62 \%$ yield). M.p.: $67.5-$ $68.3{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.60(\mathrm{~m}, 3 \mathrm{H})$, $4.70(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=8.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=14.7,8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{dd}, J=14.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, 0.98 ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.49,154.80,143.22$, $138.15,131.89,127.22,114.30,113.67,111.77,52.34,39.79,35.58,22.98,19.05$, 7.87. Elemental Anal. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$: calcd C 77.55%, $\mathrm{H} 8.68 \%$, found $\mathrm{C} 77.42 \%, \mathrm{H}$ 8.45\%.

4-(3-Hydroxy-5-methylphenyl)-6-methylhept-6-en-3-one (2g)

Following the general procedure A, benzocyclobutenol $\mathbf{1 g}(46.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ was used and the reaction time was 8 h . Purification by column chromatography on silica
gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{2 g}$ as a yellow solid $(34.3 \mathrm{mg}$, 74% yield). M.p.: $75.4-76.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.60-6.57(\mathrm{~m}, 3 \mathrm{H})$, 6.47 (brs, 1H), $4.70(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=14.8$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.02,156.30,143.04,140.12,140.01,121.45$, $115.19,111.78,111.68,56.70,39.85,35.22,22.84,21.32,7.79$. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 233.1536; found 233.1532.

4-(3-Hydroxyphenyl)-6-methyleneoctan-3-one (2h)

Following the general procedure A, benzocyclobutenol $\mathbf{1 h}(46.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ was used and the reaction was placed directly in an oil bath at $110{ }^{\circ} \mathrm{C}$ for 5 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{2 h}$ as a yellow liquid ($30.5 \mathrm{mg}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.17 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 3 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=14.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.33(\mathrm{~m}, 3 \mathrm{H}), 1.96(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $212.19,156.45,148.53,140.32,129.98,120.65,114.55,114.51,109.49,56.85,38.43$, 35.37, 29.11, 12.17, 7.79. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 233.1536; found 233.1538.

4-(3-Hydroxyphenyl)-6-phenylhept-6-en-3-one (2i)

Following the general procedure A, benzocyclobutenol $\mathbf{1 i}(56.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ was used. Purification by column chromatography on silica gel (petroleum ether : ethyl
acetate $=20: 1)$ afforded $\mathbf{2 i}$ as a colorless liquid ($41.8 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (brs, 1H), 6.81-6.78 (m, 2H), $6.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=14.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=14.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.38$ $(\mathrm{m}, 1 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $212.30,156.49,145.54,140.51,140.02$, 129.97, 128.39, 127.54, 126.27, 120.74, 114.82, 114.57, 114.51, 56.63, 38.14, 35.63, 7.73. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}$ $+\mathrm{Na}]^{+}$: calcd 303.1356; found 303.1356.

3-(3-Hydroxyphenyl)-5-phenylhex-5-en-2-one (2j)

Following the general procedure A, benzocyclobutenol $\mathbf{1 j}$ ($53.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1)$ afforded $\mathbf{2 j}$ as a yellow liquid ($38.1 \mathrm{mg}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{brs}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}$, $1 \mathrm{H}), 3.74(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=14.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=14.7,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.17,156.36,145.47,140.56$, 139.80, 130.06, 128.41, 127.57, 126.30, 120.85, 114.86, 114.66, 114.60, 57.56, 37.73, 29.48. HRMS (ESI+) for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 289.1199; found 289.1202.

4-(3-Hydroxyphenyl)hept-6-en-3-one (2k)

Following the general procedure A, benzocyclobutenol 1k ($40.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{2 k}$ as a light brown liquid ($26.5 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.76(\mathrm{~m}, 3 \mathrm{H}), 5.70-5.60(\mathrm{~m}$, $1 \mathrm{H}), 5.03-4.93(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.34(\mathrm{~m}$, $3 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.99$, 156.46, 139.94, 135.57, 130.07, 120.76, 116.71, 114.59, 114.50, 58.25, 36.38, 35.29, 7.80. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: calcd 227.1043; found 227.1046.

1-(3-(Cinnamyloxy)phenyl)butan-2-one (21)

Following the general procedure A , benzocyclobutenol $1 \mathbf{1}(56.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ was used and the reaction time was 4 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=40: 1)$ afforded $\mathbf{2 l}$ as a colorless liquid $(14.0 \mathrm{mg}$, 25% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dt}, J=15.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H})$, $2.48(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 208.95, 158.81, 136.36, 135.94, 133.05, 129.72, 128.57, 127.89, 126.54, 124.26, $121.94,115.85,113.21,68.54,49.89,35.12,7.73$.

1-(3-Hydroxyphenyl)butan-2-one (5a)

Following the general procedure A , benzocyclobutenol $\mathbf{1 m}(43.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{5 a}$ as a colorless liquid ($29.8 \mathrm{mg}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.76-6.71$ (m, 3H), 6.56 (brs, 1 H), 3.64 (s, $2 \mathrm{H}), 2.50(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $210.89,156.24,135.54,129.89,121.38,116.18,114.26,49.65,35.23,7.71$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NaO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: calcd 187.0730; found 187.0731.

1-(3-Hydroxyphenyl)-3-phenylpropan-2-one (5b)

Following the general procedure A, benzocyclobutenol 1n ($56.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{5 b}$ as a yellow liquid ($24.0 \mathrm{mg}, 53 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.74-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.63-$ $6.62(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.89$, $156.11,135.23,133.72,129.93,129.48,128.72,127.11,121.65,116.35,114.33,49.00$, 48.92. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 249.0886; found 249.0885 .

1-(3-Hydroxyphenyl)-3-methylbutan-2-one (5c)

Following the general procedure A , benzocyclobutenol $1 \mathrm{o}(46.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{5 c}$ as a yellow liquid ($26.9 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.69(\mathrm{~m}, 3 \mathrm{H}), 6.36$ (brs, 1H), 3.70 (s, $2 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 213.59, 156.17, 135.59, 129.80, 121.50, 116.32, 114.19, 47.60, 40.10, 18.29. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NaO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: calcd 201.0886; found 201.0885.

1-Cyclopropyl-2-(3-hydroxyphenyl)ethan-1-one (5d)

Following the general procedure A, benzocyclobutenol 1p ($46.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) afforded $\mathbf{5 d}$ as a yellow liquid ($20.6 \mathrm{mg}, 59 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.66(\mathrm{~m}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.03-1.97$
$(\mathrm{m}, 1 \mathrm{H}), 1.09-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $210.20,156.32,135.54,129.86,121.53,116.34,114.26,50.49,20.30,11.84$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 177.0910; found 177.0910.

2-(3-Hydroxyphenyl)-1-phenylethan-1-one (5e)

Following the general procedure A, benzocyclobutenol 1q ($53.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1)$ afforded $\mathbf{5 e}$ as a yellow liquid $(11.6 \mathrm{mg}, 27 \%$ yield $)$ and $\mathbf{6 a}(26.5 \mathrm{mg}$, $62 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.72$ (m, 2H), 5.51 (brs, 1H), $4.23(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.09, 155.94, $136.35,135.98,133.35,129.90,128.68,128.67,121.73,116.35,114.09,45.35$.

(2-Hydroxy-6-methylphenyl)(phenyl)methanone (6a)

Following the general procedure B, benzocyclobutenol $1 \mathbf{q}(53.3 \mathrm{mg}, 0.2 \mathrm{mmol})$ was used. Purification by column chromatography on silica gel (petroleum ether : dichloromethane $=1: 1$) afforded $\mathbf{6 a}$ as a light yellow liquid ($38.5 \mathrm{mg}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 201.01, 158.08, 139.67, 138.53, 133.01, 128.98, 128.69, 123.32, 122.77, 114.88, 22.23. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 213.0910; found 213.0910
(2,5-Dimethylphenyl)(2-hydroxy-6-methylphenyl)methanone (6b)

Following the general procedure B , benzocyclobutenol $\mathbf{1 r}(58.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ was used. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1)$ afforded $\mathbf{6 b}$ as a yellow solid ($35.1 \mathrm{mg}, 73 \%$ yield). M.p.: $96.7-$ $97.1{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.08(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}$, 6 H), $1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.54, 161.61, 141.21, 140.15, $135.65,134.66,132.39,131.45,131.22,127.97,122.89,122.05,115.83,22.62,20.77$, 19.19. Elemental Anal. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$: calcd C 79.97%, H 6.71%, found C $79.59 \%, \mathrm{H}$ 6.87%.

(2-Hydroxy-6-methylphenyl)(3-methoxyphenyl)methanone (6c)

Following the general procedure B, benzocyclobutenol 1s ($59.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. Purification by column chromatography on silica gel (petroleum ether : dichloromethane $=1: 1$) afforded $\mathbf{6 c}$ as a yellow liquid ($33.2 \mathrm{mg}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H})$, $7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.64$, 159.87, $157.73,140.84,138.47,132.84,129.71,123.64,122.74,121.92,119.44,114.75$, 112.96, 55.45, 21.90. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 243.1016; found 243.1017.

(2-Hydroxy-6-methylphenyl)(4-methoxyphenyl)methanone (6d)

Following the general procedure B, benzocyclobutenol $\mathbf{1 t}$ ($59.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) was
used. Purification by column chromatography on silica gel (petroleum ether : dichloromethane $=1: 3$) afforded $\mathbf{6 d}$ as a yellow liquid ($17.2 \mathrm{mg}, 35 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (s, 3H), $2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.89, 163.82, 156.90, 137.88, 132.17, 131.88, 131.77, 124.27, 122.62, 114.58, 113.94, 55.50, 21.71. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 243.1016; found 243.1013.

(2-Hydroxy-6-methylphenyl)(thiophen-2-yl)methanone (6e)

Following the general procedure B, benzocyclobutenol 1u ($54.5 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. Purification by column chromatography on silica gel (petroleum ether : dichloromethane $=1: 4)$ afforded $\mathbf{6 e}$ as a colorless liquid ($18.0 \mathrm{mg}, 41 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.13,155.28,144.70,137.18,135.37,135.24,131.78,128.28$, 125.39, 122.80, 114.32, 20.96. HRMS (ESI $)$ for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 219.0474; found 219.0475.

VII. Control experiments

i. The reaction of different benzocyclobutenols in the presence of $\mathrm{K}_{3} \mathrm{PO}_{4}$

To an oven-dried Schlenk tube with a stirring bar was added $\mathrm{K}_{3} \mathrm{PO}_{4}(21.2 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ and benzocyclobutenols. The tube was evacuated and backfilled with N_{2} for three times. 1,4-Dioxane (1.0 mL) was then added. The tube was heated at $110^{\circ} \mathrm{C}$ for 2 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc for three times. The combined organic phases were washed with brine and dried over anhydrous MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography on silica gel to afford the ring-opening products.
(a)

Benzocyclobutenol 1a ($43.7 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used and the reaction time was 2 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=$ $50: 1)$ afforded 3 as a yellow liquid ($33.1 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 3 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.41$ (s, 2H), 3.64 (s, 2H), 2.47 (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.97,158.96,140.78,135.84,129.61,121.81$, $115.82,113.18,112.73,71.60,49.87,35.09,19.42,7.73$.

Benzocyclobutenol 8 ($35.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used and the reaction time was 1 h . Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=$ $50: 1)$ afforded $9(22.5 \mathrm{mg})$ in 63% yield and $\mathbf{1 0}(5.1 \mathrm{mg})$ in 14% yield.

1-(3-Methoxyphenyl)butan-2-one (9)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.75-$ $6.74(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.88,159.77$, 135.89, 129.63, 121.69, 114.95, 112.39, 55.14, 49.85, 35.08, 7.72.

1-(2-Methoxy-6-methylphenyl)propan-1-one (10)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$
(d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 208.94, 155.93, 135.20, 131.33, 129.55, 122.77, 108.15, 55.52, 37.72, 18.87, 7.78.
(c)

Benzocyclobutenol 11 ($29.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used and the reaction time was 1 h . Purification by column chromatography on silica gel (petroleum ether : dichloromethane $=5: 1$) afforded ketone $\mathbf{1 2}$ as a colorless liquid ($23.0 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.15,138.09,137.83,131.86,131.02,128.22$, 125.61, 34.72, 21.24, 8.36.

ii. The reaction of ketone 3 under standard conditions

Following the general procedure A, ketone $\mathbf{3}(43.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ was used as the substrate. Purification by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1)$ afforded $\mathbf{2 a}(32.5 \mathrm{mg})$ in 74% yield .
iii. The reaction of ketone 3 at $80^{\circ} \mathrm{C}$

Following the general procedure A except that the reaction temperature was $80^{\circ} \mathrm{C}$, ketone $\mathbf{3 a}$ ($43.7 \mathrm{mg}, 0.2 \mathrm{mmol}$) was used. The NMR yields of compound 2a and 7 were 22% and 17%, respectively.

6-Methyl-4-(3-((2-methylallyl)oxy)phenyl)hept-6-en-3-one (7)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.79(\mathrm{~m}, 3 \mathrm{H}), 5.09(\mathrm{~s}$, $1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.81 (dd, $J=14.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.30(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.28,159.00,143.10,140.77$, $140.39,129.65,120.76,114.66,113.32,112.79,111.85,71.63,56.89,39.86,35.04$, 22.82, 19.44, 7.82. HRMS (ESI $)$ for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 295.1669; found 295.1671.

iv. The cross-over experiment

Following the general procedure A , benzocyclobutenols $\mathbf{1 b}(21.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $1 \mathbf{i}(28.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ were used as the substrates. After workup, the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR spectrometer. It was found that compounds $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 i}$ and $\mathbf{2} \mathbf{j}$ were formed in a ratio of around 1:1:1:1.

VIII. Mechanistic studies by DFT calculations

i. Computational details

All of the calculations were performed with the Gaussian 09 package 7 using B3LYP-D3(BJ) functional. ${ }^{8}$ Geometry optimizations were carried out with the def2-SVP ${ }^{9}$ basis set. Vibrational frequencies were computed analytically at the same level of theory to confirm whether the structures are minima (no imaginary frequencies) or transition states (only one imaginary frequency). Selected key transition-state structures were confirmed to connect corresponding reactants and products by intrinsic reaction coordinate (IRC) calculations. ${ }^{10}$ To obtain better accuracy, energies of the optimized geometries were recalculated using the def2-TZVPP ${ }^{11}$ basis set. Solvation effects (1,4-dioxane, $\varepsilon=2.2099$) were taken into account using the PCM model ${ }^{12}$ with UFF radii in the single-point calculations. The final Gibbs free energies reported in the article are the single-point energies with Gibbs free energy correction (at 298.15 K).
ii. Key transition states of the $\mathbf{C}-\mathbf{C}$ bond cleavage

To gain deeper insights into the origins of the substituent-controlled selectivity,
preliminary mechanistic studies were performed by means of density functional theory calculations. Starting from the oxy-anionic intermediates generated via the deprotonation of the OH group by $\mathrm{K}_{3} \mathrm{PO}_{4}$, the key transition states of the proximal and distal $\mathrm{C}-\mathrm{C}$ bond cleavage were located. The computations show that for the reaction of α-methyl substituted benzocyclobutenol, the proximal $\mathrm{C}-\mathrm{C}$ bond cleavage is more favored than the distal C-C bond cleavage by $1.1 \mathrm{kcal} / \mathrm{mol}$. On the other hand, for the reaction of α-phenyl substituted benzocyclobutenol, the distal $\mathrm{C}-\mathrm{C}$ bond cleavage is preferred by $1.0 \mathrm{kcal} / \mathrm{mol}$ compared with the proximal C-C bond cleavage. Although the calculated energy differences are somewhat underestimated compared to the experiments, the computations indeed reproduced quite well the selectivity switch upon change of the substituent.

Figure S8. Calculated energies of the proximal and distal $\mathrm{C}-\mathrm{C}$ bond cleavage. Energies and bond distances are given in $\mathrm{kcal} / \mathrm{mol}$ and \AA, respectively.

iii. Cartesian coordinates and energies

TS-proximal-Me

$\mathrm{E}=-655.1608259$
Thermal correction to Gibbs free energy $=0.201389$

C	-6.38142800	-0.22226200	2.67312600
C	-5.57580400	-0.73631500	1.64280300

C	-4.59843500	0.10773000	1.10436600
C	-4.38059800	1.41223700	1.56268000
C	-5.22045500	1.90719400	2.55736300
C	-6.21728800	1.09234000	3.12830300
H	-7.15984100	-0.84848900	3.12310300
H	-5.73143800	-1.75752900	1.27643400
H	-6.85762000	1.49681000	3.91956600
O	-5.12886800	3.20313900	3.01440600
C	-4.09251900	3.97176300	2.41910500
H	-4.08980000	3.86634800	1.32008400
H	-3.10838200	3.58445600	2.75367400
C	-4.26174400	5.39501900	2.84891000
C	-4.21038300	6.44758600	2.02554400
H	-4.41946900	5.55280600	3.92511400
H	-4.06521100	6.25981100	0.95352700
C	-4.32906700	7.88383700	2.44375500
H	-5.17385600	8.38420600	1.93596400
H	-4.48322700	7.97749100	3.53083800
H	-3.42383200	8.46078700	2.17893300
C	-2.92914400	1.40307700	0.17861400
C	-3.61561500	-0.01146500	-0.03003600
O	-2.94403000	2.26333300	-0.72675700
H	-4.09988700	-0.00810700	-1.02139600
H	-2.91518800	-0.87036600	0.01360700
C	-1.67475200	1.32330700	1.07185600
H	-0.82276300	0.99104000	0.44512300
H	-1.43622300	2.33019900	1.44767100
H	-1.78627300	0.63425600	1.92380200

TS-distal-Me

$\mathrm{E}=-655.1604541$			
Thermal correction to Gibbs free energy $=0.202796$			
C	-6.25953900	0.58122400	2.76907300
C	-5.71207600	0.51361000	1.48142700
C	-4.67868200	1.40805500	1.15789700
C	-4.12910000	2.25536500	2.14115600
C	-4.72344100	2.37461500	3.40356600
C	-5.80036200	1.51695600	3.70524200
H	-7.07925800	-0.08954400	3.05013900
H	-6.10005800	-0.19523600	0.74243000
H	-6.24166700	1.58302800	4.70313500
O	-4.29425400	3.18342300	4.42461500
C	-3.79009200	4.48504600	4.07835200
H	-2.97739500	4.41094600	3.34036400
H	-3.39306200	4.87853400	5.02906800
C	-4.87487100	5.37051900	3.53617800
C	-4.95568600	5.68638300	2.23709900
H	-5.65951800	5.68866300	4.23888700
H	-4.16793800	5.28541400	1.57862500
C	-6.05675200	6.49543500	1.62210300
H	-6.58893000	5.90608800	0.85387000
H	-6.79578000	6.83080500	2.36926000
H	-5.66072600	7.38823900	1.10394000
C	-2.82670200	2.72028800	1.47292800
C	-3.85934000	1.67299400	-0.03287500
O	-2.54434800	3.93643400	1.27739700
H	-4.12365300	2.59419500	-0.56758100
H	-3.64021500	0.83727000	-0.72185600
C	-1.65638500	1.77085600	1.77066700
H	-0.86203900	1.94052700	1.02677200

H	-1.23773300	2.01956300	2.76745400
H	-1.95071200	0.71096400	1.76683200

TS-proximal-Ph

$\mathrm{E}=-846.9922855$
Thermal correction to Gibbs free energy $=0.250006$
-6.34851200

C

C

C
C

C

H

H

H
O

C
H

H
C

C

H

H

C
H

H

H

C

C
O

-6.34851200	-0.26276200	2.68711500
-5.52646700	-0.79095200	1.67735200
-4.58894300	0.06917800	1.09525600
-4.43510100	1.40034100	1.49145800
-5.26888100	1.90511500	2.48593200
-6.23148800	1.07359600	3.09069000
-7.09886200	-0.89932300	3.16836700
-5.63516800	-1.83517200	1.36409200
-6.87746200	1.48146100	3.87515200
-5.19568100	3.20749300	2.91201300
-4.14629400	3.96660300	2.31993700
-4.18890700	3.91580400	1.21780700
-3.16944900	3.52725700	2.59975300
-4.24687100	5.37257100	2.81917500
-4.19142300	6.46030400	2.04332200
-4.34694700	5.48464900	3.90764000
-4.10177900	6.31898000	0.95808700
-4.22999100	7.87853700	2.53164100
-5.07246000	8.43758900	2.08498900
-4.33348100	7.92631800	3.62753900
-3.31185400	8.42821200	2.25403100
-2.94185000	1.36753400	0.11937600
-3.57480200	-0.07067900	-0.00851900
-2.96892700	2.15924500	-0.84695700

C	-1.76778600	1.48082600	1.09432200
C	-0.91104000	2.57989200	0.93317500
C	-1.48155400	0.56260800	2.12039500
C	0.18190200	2.77603700	1.78104900
H	-1.14960100	3.26035400	0.11267600
C	-0.38324500	0.74838400	2.96139800
H	-2.14436200	-0.28978200	2.28201600
C	0.45473100	1.86002400	2.80180600
H	0.83080500	3.64738200	1.64270500
H	-0.18143000	0.02329300	3.75643800
H	1.31055700	2.00770500	3.46742600
H	-4.03103800	-0.13126900	-1.01021700
H	-2.85008500	-0.90178500	0.09131400

TS-distal-Ph

$E=-846.9938628$
Thermal correction to Gibbs free energy $=0.250113$

C	-6.59214900	0.68035100	2.47547000
C	-5.94528600	0.67133200	1.22621900
C	-4.75027300	1.38531900	1.14608900
C	-4.18870800	2.04403900	2.24149300
C	-4.85859400	2.10280500	3.46624100
C	-6.07061000	1.38516700	3.56797900
H	-7.53554300	0.13884400	2.60299300
H	-6.37928300	0.14243200	0.37224400
H	-6.59685900	1.39566500	4.52657500
O	-4.44673300	2.79281100	4.56074100
C	-3.21926500	3.53409800	4.45200200
H	-3.34780400	4.42619900	5.08704600
H	-3.05332900	3.86432900	3.40154600

C	-2.05409300	2.72111500	4.92375300
C	-1.12328700	3.13531100	5.78965400
H	-1.94948500	1.73614400	4.45753000
H	-1.22766200	4.13189600	6.24260000
C	0.10413700	2.35419900	6.15805000
H	0.17446000	2.18495400	7.24890300
H	0.11952900	1.37887000	5.64822800
H	1.02352200	2.89252100	5.86287700
C	-2.90493700	2.53384300	1.43460800
C	-3.67897600	1.79881700	0.16282900
O	-2.65108600	3.80870900	1.37308500
C	-1.68290900	1.65516300	1.83993800
C	-0.45563700	2.31587000	1.96255300
C	-1.73281800	0.28085800	2.12079200
C	0.69435400	1.63277300	2.36502700
H	-0.48695000	3.38832000	1.75032400
C	-0.58642100	-0.40879200	2.52851600
H	-2.68571000	-0.25016400	2.04456500
C	0.63480100	0.26510500	2.65623500
H	1.64410500	2.16896200	2.46689300
H	-0.64588400	-1.47821100	2.75659800
H	1.53023200	-0.27250400	2.98338100
H	-3.99554600	2.59727800	-0.52521700
H	-3.15487800	0.99989600	-0.39115600

IX. Synthetic applications

i. Reaction of compound 2 i with phenyl lithium ${ }^{13}$

${ }^{n} \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.28 \mathrm{~mL}, 0.4 \mathrm{mmol})$ was added dropwise to the solution of bromobenzene ($46.0 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in THF $(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 1 h , a solution of $\mathbf{2 i}(56.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF (1.0 mL) was added dropwise. The reaction solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 4 h and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous phase was extracted with EtOAc for three times. The combined organic phases were washed with brine, dried over anhydrous MgSO_{4}, filtered, and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) to afford 28 as a yellow liquid ($40.8 \mathrm{mg}, 57 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.42(\mathrm{~m}$, 4H), $7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.70(\mathrm{~m}$, $3 \mathrm{H}), 5.61$ (brs, 1H), 4.89 (s, 1H), 4.67 (s, 1H), 2.94 (dd, $J=11.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-$ $2.75(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (brs, 1H), $1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.36-$ $1.26(\mathrm{~m}, 1 \mathrm{H}), 0.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.32,146.59$, $144.48,142.31,140.75,129.03,128.07,127.92,127.05,126.48,126.42,125.83$, 114.46, 113.63, 79.91, 54.93, 35.91, 34.54, 7.60. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NaO}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+}$: calcd 381.1825; found 381.1828.

ii. Cyclopropanation of $\mathbf{2 i}{ }^{14}$

$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(22.0 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ was added to a solution of $\mathrm{Et}_{2} \mathrm{Zn}(1.0 \mathrm{M}$ in hexane, $0.3 \mathrm{~mL}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 20 min , $\mathrm{CH}_{2} \mathrm{I}_{2}(24.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ was added dropwise and the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for another 20 min . A solution of $\mathbf{2 i}(28.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$
was then added dropwise. After stirring at $0{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, \mathbf{2 i}$ was completely consumed as monitored by TLC. The reaction mixture was quenched with aqueous 3 M HCl solution. The aqueous phase was extracted with EtOAc for three times. The combined organic phases were washed with saturated NaHCO_{3} solution and brine, dried over anhydrous MgSO_{4}, filtered, and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) to afford 29 as a colorless liquid ($16.2 \mathrm{mg}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.13(\mathrm{~m}$, $6 \mathrm{H}), 6.75-6.66$ (m, 3H), 6.04 (brs, 1H), 3.61 (t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.60(\mathrm{dd}, J=14.2$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{dd}, J=14.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.70-0.68(\mathrm{~m}, 3 \mathrm{H}), 0.44-0.42(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.25$, 156.26, 144.27, 141.15, 129.89, 128.99, 128.30, 126.19, 120.86, 114.61, 114.28, 56.31, 42.55, 35.48, 24.20, 12.89, 12.84, 7.74. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+}$: calcd 317.1512; found 317.1516.

iii. Intramolecular cyclization of $\mathbf{2 i} \mathbf{i}^{15}$

To an oven-dried Schlenk tube with a stirring bar was successively added $\mathbf{2 i}$ (28.0 mg , $0.1 \mathrm{mmol})$ and $\mathrm{Bi}(\mathrm{OTf})_{3}(3.3 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$. The tube was then evacuated and backfilled with N_{2} for three times. $\mathrm{H}_{2} \mathrm{O}(0.36 \mu \mathrm{~L}, 0.02 \mathrm{mmol})$ and 1,2-dichloroethane $(1.0 \mathrm{~mL})$ was then added. The tube was heated to reflux and stirred for 3.5 h . The mixture was quenched with ice water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ for three times. The combined organic phases were washed with brine and dried over anhydrous MgSO_{4}. The solvent was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether : ethyl acetate $=20: 1$) to afford the desired product 30 as a yellow liquid ($16.8 \mathrm{mg}, 60 \%$ yield, $1.5: 1 \mathrm{~d}$. r.). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.40-7.22^{+}\left(\mathrm{m}, 4 \mathrm{H}, 4 \mathrm{H}^{*}\right), 7.17-7.11\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{*}\right), 6.92-6.77^{+}\left(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{H}^{*}\right)$, 4.24* (t, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.46^{+}\left(\mathrm{m}, 4 \mathrm{H}, 4 \mathrm{H}^{*}\right), 1.82(\mathrm{~s}$,
$3 \mathrm{H}), 1.69^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.09^{*}(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.67,212.58^{*}, 155.31,155.22^{*}, 148.63^{*}, 148.56,143.95^{*}, 142.28$, 142.19, 141.57*, 128.13 ${ }^{+}$, 126.88*, 126.25, 126.07*, 125.98, 125.51*, 125.37, $115.41^{*}, 115.18,111.72^{*}, 111.61,55.92^{*}, 55.09,50.96^{*}, 50.66,48.16^{*}, 47.84,34.79$, 34.02*, 28.54, 27.56*, 7.85^{+}. HRMS (ESI $)$for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 303.1356; found 303.1363.

X. X-ray data of compounds $2 \mathrm{f}, \mathbf{2 g}$ and $\mathbf{6 b}$

Crystal data and structure refinement for compound $\mathbf{2 f}$:

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$
Formula weight	232.31
Temperature	293.26 (10) K
Wavelength	1.54184
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
Unit cell dimensions	$a=23.7772(3) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=7.7804(1) \AA \quad \beta=102.3770(10)^{\circ}$
	$\mathrm{c}=15.2918(2) \AA \quad \gamma=90^{\circ}$
Volume	2763.17(6) \AA^{3}
Z	8
Density (calculated)	$1.117 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.570 \mathrm{~mm}^{-1}$
F(000)	1008.0
Theta range for data collection	11.43 to 152.112°
Index ranges	$-29 \leq \mathrm{h} \leq 29,-8 \leq \mathrm{k} \leq 9,-19 \leq 1 \leq 14$
Reflections collected	25147
Independent reflections	$5500\left[\mathrm{R}_{\text {int }}=0.0194, \mathrm{R}_{\text {sigma }}=0.0126\right]$
Data/restraints/parameters	5500/97/335
Goodness-of-fit on F^{2}	1.028
Final R indexes $[\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0462, \mathrm{wR}_{2}=0.1280$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0497, \mathrm{wR}_{2}=0.1311$

$\stackrel{0}{9}$

Crystal data and structure refinement for compound $\mathbf{2 g}$:

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$
Formula weight	230.29
Temperature	294.09 (10) K
Wavelength	1.54184
Crystal system	monoclinic
Space group	C2/c
Unit cell dimensions	$a=24.5707(3) \AA$ ¢ $\quad \alpha=90^{\circ}$
	c $=15.3888(2) \AA$ A ${ }^{\text {A }}$
Volume	2850.86 (6) \AA^{3}
Z	8
Density (calculated)	$1.073 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.552 \mathrm{~mm}^{-1}$
F(000)	992.0
Theta range for data collection	11.974 to $152.206{ }^{\circ}$.
Index ranges	$-26 \leq h \leq 30,-9 \leq \mathrm{k} \leq 9,-19 \leq 1 \leq 19$
Reflections collected	26256
Independent reflections	2893 [$\left.\mathrm{R}_{\text {int }}=0.0212, \mathrm{R}_{\text {sigma }}=0.0089\right]$
Data/restraints/parameters	2893/0/166
Goodness-of-fit on F^{2}	0.950
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0465, \mathrm{wR}_{2}=0.1550$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0483, \mathrm{wR}_{2}=0.1578$

Crystal data and structure refinement for compound $\mathbf{6 b}$:

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})$]
R indexes [all data]
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$
240.29
293.74 (10) K
1.54184
orthorhombic
P2 ${ }_{1} 2_{1} 2_{1}$
$\mathrm{a}=7.35280(10) \AA \quad \alpha=90^{\circ}$
$\mathrm{b}=7.36750(10) \AA \quad \beta=90^{\circ}$
$\mathrm{c}=24.5337(4) \AA \quad \gamma=90^{\circ}$
1329.03(3) \AA^{3}

4
$1.201 \mathrm{~g} / \mathrm{cm}^{3}$
$0.619 \mathrm{~mm}^{-1}$
512.0
7.206 to 152.764 .
$-9 \leq h \leq 9,-9 \leq k \leq 9,-30 \leq 1 \leq 28$
12440
$2657\left[\mathrm{R}_{\text {int }}=0.0335, \mathrm{R}_{\text {sigma }}=0.0199\right]$
2657/0/167
1.079
$\mathrm{R}_{1}=0.0420, \mathrm{wR}_{2}=0.1210$
$\mathrm{R}_{1}=0.0448, \mathrm{wR}_{2}=0.1237$

XI. References

1 C. Zhao, L.-C. Liu, J. Wang, C. Jiang, Q.-W. Zhang and W. He, Org. Lett., 2016, 18, 328.

2 K. Kobayashi, M. Itoh and H. Suginome, Tetrahedron Lett., 1987, 28, 3369.
3 S. Singh, R. Samineni, S. Pabbaraja and G. Mehta. Angew. Chem. Int. Ed., 2018, 57, 16847.

4 (a) P.-H. Chen, N. A. Savage and G. Dong, Tetrahedron, 2014, 70, 4135; (b) L. S. Liebeskind, L. J. Lescosky and C. M. McSwain, J. Org. Chem., 1989, 54, 1435.

5 T. Xu and G. Dong, Angew. Chem. Int. Ed., 2012, 51, 7567.
6 T. Seki, K. Kobayashi and H. Ito, Chem. Commun., 2017, 53, 6700-6703.
7 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery J., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2013.

8 (a) A. D. Becke, Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang and R. G. Parr, Development of the Colie-Salvetti Correlation-energy Formula into a Functional of the Electron Density, Phys. Rev. B, 1988, 37, 785; (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force

Fields, J. Phys. Chem., 1994, 98, 11623; (d) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu, J. Chem. Phys., 2010, 132, 154104; (e) B. Miehlich, A. Savin, H. Stoll and H. Preuss, Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr, Chem. Phys. Lett., 1989, 157, 200; (f) S. Grimme, S. Ehrlich, L. Goerigk, Effect of the Damping Function in Dispersion Corrected Density Functional Theory, J. Comput. Chem., 2011, 32, 1456.

9 F. Weigend and R. Ahlrichs, Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys., 2005, 7, 3297.

10 (a) K. Fukui, A Formulation of the Reaction Coordinate, J. Phys. Chem., 1970, 74, 4161; (b) K. Fukui, The Path of Chemical Reactions-The IRC Approach, Acc. Chem. Res., 1981, 14, 363.

11 F. Weigend, Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys., 2006, 8, 1057.

12 S. Miertuš, E. Scrocco, J. Tomasi, Electrostatic Interaction of a Solute with A Continuum. A Direct Utilizaion of AB Initio Molecular Potentials for the Prevision of Sovent Effects. Chem. Phys. 1981, 55, 117.

13 C. A. Herdman, L. Devkota, C.-M. Lin, H. Niu, T. E. Strecker, R. Lopez, L. Liu, C. S. George, R. P. Tanpure, E. Hamel, D. J. Chaplin, R. P. Mason, M. L. Trawick and K. G. Pinney, Bioorg. Med. Chem., 2015, 23, 7497.

14 S. Asako, T. Kobashi and K. Takai, J. Am. Chem. Soc., 2018, 140, 15425-15429.
15 B. Cacciuttolo, S. Poulain-Martini, F. Fontaine-Vive, M. A. H. Abdo, H. El-Kashef and E. Duñach, Eur. J. Org. Chem., 2014, 7458.
XII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the described compounds

皆
$\stackrel{\text { ®̀ }}{\circ}$

[^0]

[^1]

[^2]

[^3]

$\stackrel{\stackrel{\circ}{\mathrm{N}}}{\stackrel{1}{\mathrm{I}}}$	4 4 1 1		$\begin{aligned} & \text { g} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	べざざ	$\begin{gathered} \text { Nos } \\ \underset{N}{\text { NiN }} \end{gathered}$	$\begin{aligned} & n \\ & \substack{0 \\ i} \end{aligned}$		$\underset{\sim}{\underset{\sim}{N}}$

io

[^4]

[^5]

-

	䓪

(

$\begin{aligned} & \infty \\ & \infty \\ & \underset{~}{\infty} \end{aligned}$	N O I	+	®	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{+}}$		$\begin{aligned} & \text { NO } \\ & \underset{N}{\text { NiN }} \\ & \hline \end{aligned}$		$\stackrel{\infty}{\text { ¢ }}$	$$

[^6]

[^0]:

[^1]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} & (\mathrm{ppm})\end{array}$

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

