Design and organocatalytic synthesis of spirooxindole-cyclopentene-isoxazole hybrids as novel MDM2-p53inhibitors
Xin Xie, ${ }^{\text {a }}$ Shan-Shan Xiong, ${ }^{\text {b }}$ Xiang Li, He Huang, Wei Huang, Feng-Bo Wu, ${ }^{\text {b }}$ Peng- Fei Shen, ${ }^{\text {b }}$ Cheng Peng,*a ${ }^{*} \mathrm{Gu} \mathrm{He}{ }^{* b}$ and Bo Han*a
${ }^{a}$ College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. E-mail: pengcheng@cdutcm.edu.cn or hanbo@cdutcm.edu.cn
${ }^{b}$ State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China. E-mail: hegu@scu.edu.cn
Supporting information
Table of Contents

1. General methods S2
2. Reaction conditions screening for the $[3+2]$ annulation S3
3. Chiral catalysts screening for the $[3+2]$ annulation S5
4. General procedures for the synthesis of products 4 S7
5. Gram-scale synthesis of products $\mathbf{4 a}$ S20
6. Crystal data of $\mathbf{4 g}$ S21
7. NMR spectra S23
8. Experimental procedures of bioassays S52
9. Predicted ADMET properties of $\mathbf{4 z}$ S55
10. References S57

1. General methods

- Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded with Bruker AV 400 MHz or 600 MHz spectrometers. Proton chemical shifts are reported in parts per million (δ scale), and are referenced using residual protium in the NMR solvent $\left(\mathrm{CDCl}_{3}: \delta 7.26\left(\mathrm{CHCl}_{3}\right)\right)$. Data are reported as follows: chemical shift [multip licity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br} \mathrm{s}=$ broad singlet), coupling constant(s) (Hz), integration].
- Carbon-13 nuclear magnetic resonance (13C NMR) spectra were recorded with Bruker AV 100 MHz or 150 MHz spectrometers. Carbon chemical shifts are reported in parts per million (δ scale), and are referenced using the carbon resonances of the solvent (CDCl3: $\delta 77.0(\mathrm{CHCl} 3))$. Data are reported as follows: chemical shift [multiplicity (if not singlet), assignment $(\mathrm{Cq}=$ fully substituted carbon $)$].
- High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2 using an electrospray (ESI) ionization source.
- Column chromatography was performed on silica gel (400-500 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I2 were used to visualize products.
- Melting points were determined on a Mel-Temp apparatus and are uncorrected.
- The MBH carbonates1 and 4-nitro-5-alkenylisoxazoles2 were prepared according to the literature procedures.

2. Reaction conditions screening for the [3+2] annulation

Table S1 Reaction conditions screening for the [3+2] annulation. ${ }^{a}$

			$\begin{aligned} & \text { Cat } \\ & (20 \mathrm{~mol} \%) \\ & \hline \text { Solvent } \\ & (1.0 \mathrm{~mL}) \end{aligned}$	$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}]{\substack{\text { TFA } \\ \text { TFA }}}$		
Entry	Cat	Solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	t (h)	Yield ${ }^{b}$ (\%)	$\begin{gathered} \text { d.r. }^{c} \\ (\%) \\ \hline \end{gathered}$
1	DABCO	Tol	RT	12	-	-
2	PPh_{3}	Tol	RT	12	-	-
3	DMAP	Tol	RT	6	82	11:1
4	DMAP	DCM	RT	6	91	15:1
5	DMAP	DCE	RT	6	88	14:1
6	DMAP	EtOAc	RT	6	77	10:1
7	DMAP	MeCN	RT	6	70	8:1
8	DMAP	DCM	0	6	91	15:1
9	DMAP	DCM	-10	8	90	>19:1
10	DMAP	DCM	-20	10	84	$>19: 1$
11^{d}	DMAP	DCM	-10	8	88	$>19: 1$
12^{e}	DMAP	DCM	-10	8	90	18:1

${ }^{a} \mathrm{MBH}$ carbonate $\mathbf{1 a}(0.1 \mathrm{mmol})$ with 4-nitro-5-alkenylisoxazole 2a ($0.11 \mathrm{mmol}, 1.1$ equiv) were employed as model substrates.
${ }^{b}$ Yield was calculated from the isolated pure diastereomer.
${ }^{c}$ d.r. value was determined by 1 H NMR analysis of the crude reaction mixture.
${ }^{d}$ MBH carbonate $\mathbf{1 a}(0.1 \mathrm{mmol})$ with 4-nitro-5-alkenylisoxazole $\mathbf{2 a}$ ($0.2 \mathrm{mmol}, 2.0$ equiv) were employed.
${ }^{e}$ MBH carbonate 1a $(0.1 \mathrm{mmol})$ with 4-nitro-5-alkenylisoxazole 2a ($0.05 \mathrm{mmol}, 1.0$ equiv) were employed.

To test the feasibility of our proposal, the initial reaction of 4-nitro-5styrylisoxazole 1a and MBH carbonate 2a was carried out in the presence of common used Lewis bases (DBACO, PPh_{3}, and DMAP) in toluene (1.0 mL) at ambient temperature. To our delight, the expected deprotected [3+2] annulation product $\mathbf{4 a}$ was cleanly obtained in remarkable yield and diastereoselectivity when using DMAP as catalyst after 6 hours (Table 1, entry 3). The reaction exhibited exclusive α regioselectivity, and no desired product was observed with the catalysis of PPh_{3} and DBACO (entries 1-2). This result encouraged us to explore other conditions to get more desirable results in terms of reaction efficiency and diastereoselectivity (entries 4-7). Impressively, using dichloromethane as solvent afforded 4a in 88% yield with diastereoselectivity of up to 15:1 (entry 4). Next, we investigated the influence of other
reaction parameters, including temperature and ratio of reagents. Lowering reaction temperature in overall led to excellent d.r. value regardless of longer reaction time (entries 8-10). Notably, the optimal temperature of $-10^{\circ} \mathrm{C}$ furnished target desirable product with impressive $>20: 1$ diastereoselectivity, albeit with a negligible loss in yield (entry 9). Moreover, changing the ratio of reagents led to inferior results either in yield or diastereoselective performance (entries 11-12).

3. Chiral catalysts screening for the [3+2] annulation

Table S2 Attempt to asymmetric catalytic synthesis of chiral product. ${ }^{a}$

${ }^{a}$ A mixture of $\mathbf{1}(0.1 \mathrm{mmol}), \mathbf{2}(0.11 \mathrm{mmol}, 1.1$ equiv) and catalyst ($20 \mathrm{~mol} \%$) in $\mathrm{DCM}(1.0 \mathrm{~mL})$ was stirred at $-10^{\circ} \mathrm{C}$ for about 8 h . After the consumption of 1 , the mixture was stirred at $-10^{\circ} \mathrm{C}$ followed by addition of TFA ($100 \mathrm{~mol} \%$ in 0.5 mL DCM) and then moved to room temperature for 2 h.
${ }^{b}$ Yield was calculated from the isolated pure diastereomer.
${ }^{c}$ d.r. value was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.
${ }^{d}$ e.e. values were calculated from chiral HPLC analysis of major isomer 4a.

With the optimal conditions in hand, then we attempted to develop an asymmetric catalytic version of this [3+2] annulation using a series of classic catalysts such as chiral phosphines catalysts and chiral amine catalysts. We screened a variety of chiral quinine catalysts, tertiary phosphines catalyst, chiral DMAP-type catalysts for their ability to generate the chiral product $\mathbf{4 a}$. α-Isocupreine $\mathbf{C 1}(\alpha-\mathrm{IC})$ and β-isocupreidine $\mathbf{C} 2(\beta$ ICD) were found to be efficient in the reaction, affording the desired [3+2] product $4 \mathbf{a}$ in poor yield, with accepted diastereoselectivity but no enantiomerical purity (entry 23). Inspired by the high efficiency of DMAP, a series of chiral DMAP-type catalysts were utilized and found moderate efficiency, giving product $4 \mathbf{a}$ with high diastereoselectivity but poor enantiomerical purity (entry 4-8). Chiral quinine catalyst provided low reaction efficiency, accepted diastereoselectivity but poor enantiomerical purity. Similar as PPh_{3}, chiral tertiary phosphines catalyst failed to catalyze this reaction smoothly (entry 12-14).

4. General procedures for the synthesis of products 4

A mixture of MBH carbonate $\mathbf{1}(0.1 \mathrm{mmol})$ with 4-nitro-5-alkenylisoxazole 2 (0.11 mmol, 1.1 equiv) was added dimethylaminopyridine (DMAP, $20 \mathrm{~mol} \%$) in dichloromethane (1.0 mL) at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for about 8 hours. After the consumption of MBH carbonate 1, the mixture was stirred at $10^{\circ} \mathrm{C}$ followed by addition of trifluoroacetic acid (TFA, $100 \mathrm{~mol} \%$ in 0.5 mL DCM) and then moved to room temperature for about 2 hours. The mixture was stirred until the reaction had stopped progressing as observed by TLC analysis, then diluted with EtOAc and washed with saturated aqueous NaHCO_{3}, and brine. Then the solution was concentrated and the residue was purified by flash chromatography on silica gel $($ petroleum ether/ethyl acetate $=5: 1$ to 3:1) to afford product 4, which was dried under vacuum and further analyzed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and high-resolution mass spectrometry.

Methyl-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-ox0-4-phenylspiro[cyclopentane-1,3'-indolin]-2-ene-2-carboxylate 4a:

white solid, $40.1 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$
NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.2$
$\mathrm{Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$
(d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $178.6,170.2,162.5,155.9,148.1,141.3,139.8,136.4,130.8,129.5,129.3,128.2$, 128.0, 127.2, 124.4, 122.3, 110.2, 64.3, 55.4, 52.9, 52.2, 11.5; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na} 468.1172$, found 468.1170.

Methyl-4-(4-fluorophenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxospiro[cyclo-pentane-1,3'-indolin]-2-ene-2-carboxylate 4b:

white solid, $38.3 \mathrm{mg}, 86 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}$, 2 H), 7.16 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 $(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 178.6, 170.1, 162.6 $\left(\mathrm{d}, J_{\mathrm{CF}}=246.0 \mathrm{~Hz}\right), 162.4,156.0,147.7,141.2,136.5,135.6\left(\mathrm{~d}, J_{\mathrm{CF}}=2.4 \mathrm{~Hz}\right), 130.8$, 129.7, $129.6\left(\mathrm{~d}, J_{\mathrm{CF}}=8.7 \mathrm{~Hz}\right), 127.1,124.3,122.4,116.3\left(\mathrm{~d}, J_{\mathrm{CF}}=21.0 \mathrm{~Hz}\right), 110.2$, 64.2, 55.5, 52.2, 52.2, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{6} \mathrm{Na} 486.1077$, found 486.1079.
methyl-4-(4-chlorophenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxospiro[cyclo-
pentane-1,3'-indolin]-2-ene-2-carboxylate 4c:

white solid, $41.4 \mathrm{mg}, 93 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}$, $4 \mathrm{H}), 7.15-7.13$ (m, 2H), 7.01 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (t, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.4,169.9,162.4,156.0,147.3,141.2,138.3,136.7,134.2,130.8,129.6$, 129.5, 129.4, 127.0, 124.3, 122.4, 110.2, 64.2, 55.3, 52.3, 52.2, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{Na} 502.0782$, found 502.0781.

Methy-4-(3,4-dichlorophenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxospiro[cyclo pentane-1,3'-indolin]-2-ene-2-carboxylate 4d:

white solid, $34.3 \mathrm{mg}, 77 \%$ yield, dr 15:1, m.p. $>210^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})^{1} \mathrm{H}$ NMR (600 MHz ,) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}$), $7.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=$ $8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}){ }^{13} \mathrm{C}$ NMR (150 MHz ,) $\delta 178.4,169.7,162.3,156.1,146.5$, $141.3,140.0,137.2,133.4,132.6,131.4,130.8,130.0,129.7,127.4,126.8,124.2$, 122.4, 110.3, 64.3, 55.1, 52.3, 52.0, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na} 536.0392$, found 536.0389.

Methyl-4-(2-bromophenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxospiro[cyclo

 pentane-1,3'-indolin]-2-ene-2-carboxylate 4 e :
white solid, $40.5 \mathrm{mg}, 91 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=7.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (dd, $J=7.2$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 178.6,170.5,162.5,155.7,147.7,141.3,139.7,136.5,133.1,130.5$, $130.1,129.7,129.6,128.7,127.2,124.5,124.0,122.4,110.9,64.5,53.8,52.2,52.1$, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{6} \mathrm{Na} 546.0277$, found 546.0276 .

Methyl-4-(3-bromophenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxospiro[cyclo pentane-1,3'-indolin]-2-ene-2-carboxylate 4f:

white solid, $37.9 \mathrm{mg}, 85 \%$ yield, dr $15: 1$, m.p. $>210^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.8$ Hz, 1H), $7.15-7.14$ (m, 2H), 7.00 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.87 (t, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.64(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.4,169.9$, $162.4,156.0,147.1,142.2,141.2,136.9,131.5,131.1,131.0,130.7,129.7,127.0$, 126.7, 124.3, 123.3, 122.4, 110.2, 64.3, 55.2, 52.4, 52.3, 11.5; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{6} \mathrm{Na} 546.0277$, found 546.0279.

Methyl-4-(4-bromophenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxospiro[cyclo pentane-1,3'-indolin]-2-ene-2-carboxylate 4g:

white solid, $41.0 \mathrm{mg}, 92 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.13$ (m, 2H), 7.00 (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.21(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.4,169.9,162.4,156.0,147.2,141.1,138.8$, 136.7, 132.5, 130.7, 129.7, 129.7, 127.0, 124.3, 122.4, 122.3, 110.2, 64.2, 55.3, 52.3, 52.2, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{6} \mathrm{Na}$ 546.0277, found 546.0280.

Methyl-5-(3-methyl-4-nitroisoxazol-5-yl)-4-(4-nitrophenyl)-2'-oxospiro[cyclo

 pentane-1,3'-indolin]-2-ene-2-carboxylate 4h:

4h
white solid, $37.2 \mathrm{mg}, 84 \%$ yield, dr $10: 1$, m.p. $>210^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) \delta 8.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.13$ (s, $1 \mathrm{H}), 7.62$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.14$ (m, 2H), 6.99 (d, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.36(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) \delta 178.1,169.4,162.1,156.0,147.8,147.1,145.9$, $141.1,137.5,130.6,129.7,129.0,126.6,124.5,124.2,122.4,110.2,64.3,54.9,52.3$, 52.2, 11.4; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Na}$ 531.1022, found 531.1020.

Methyl-5-(3-methyl-4-nitroisoxazol-5-yl)-4-(naphthalen-2-yl)-2'-oxospiro[cyclo

 pentane-1,3'-indolin]-2-ene-2-carboxylate 4i:
white solid, $41.4 \mathrm{mg}, 93 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}){ }^{1} \mathrm{H}$ NMR (600 MHz ,) $\delta 8.44$ (s, 1H), 8.17 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 3 \mathrm{H})$,
$7.30(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.9,170.3,162.6,155.9,149.0,141.4$, $136.1,134.1,131.3,130.7,129.6,129.3,128.8,127.4,126.9,126.9,126.1,124.5$, 122.7, 122.3, 110.3, 64.5, 54.8, 52.2, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na} 518.1328$, found 518.1330.

Methyl-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxo-4-(o-tolyl)spiro[cyclopentane-

1,3'-indolin]-2-ene-2-carboxylate 4i:

white solid, $39.2 \mathrm{mg}, 88 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.15-$ 7.13 (m, 3H), $7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.79 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (s, 3H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 178.7, 170.5, $162.5,155.9,148.9,141.2,138.1,135.8,135.7,130.9,130.6,129.5,128.7,128.0$, 127.4, 124.4, 122.3, 110.1, 64.3, 54.8, 52.1, 49.0, 19.9, 11.5; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na} 482.1328$, found 482.1325.

Methyl-4-(2-methoxyphenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxospiro[cyclo pentane-1,3'-indolin]-2-ene-2-carboxylate 4k:

white solid, $38.3 \mathrm{mg}, 86 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.43$ (dd, $J=7.5$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$
($\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.0-6.9(\mathrm{~m}$, $1 \mathrm{H}), 6.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.8,171.7,162.7,156.9,155.4,148.9$, 141.3, 135.6, 130.3, 129.4, 129.2, 128.7, 128.1, 127.6, 124.7, 122.1, 121.3, 110.7, 110.0, 64.3, 55.4, 53.2, 52.1, 47.1, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Na} 498.1277$, found 498.1279.

Methyl-4-(3,4-dimethoxyphenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxospiro

[cyclopentane-1,3'-indolin]-2-ene-2-carboxylate 41:

white solid, $35.6 \mathrm{mg}, 80 \%$ yield, dr 13:1, m.p. $190-191^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$

41 NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13$ (dt, $J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.92$ (dd, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.6,170.4,162.5,155.8,149.6,148.8,148.3$, 141.1, 135.8, 132.2, 130.6, 129.4, 127.2, 124.2, 122.2, 120.2, 111.4, 110.7, 110.0, 64.1, 56.1, 55.9, 55.3, 52.7, 52.1, 11.4; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Na} 528.1383$, found 528.1381.

Methyl-4-(4-isopropylphenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxospiro[cyclo pentane-1,3'-indolin]-2-ene-2-carboxylate 4m:

$6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (s, 3H), $2.89(\mathrm{dt}, J=13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.9,170.3,162.6,155.9$, $149.0,148.4,141.2,137.1,136.1,130.8,129.5,127.9,127.4,127.3,124.4,122.3$, 110.2, 64.3, 55.4, 52.6, 52.2, 33.9, 24.1, 24.0, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na} 510.1641$, found 510.1644.

Methyl-4-(furan-2-yl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxospiro[cyclo pentane-1,3'-indolin]-2-ene-2-carboxylate 4n:

white solid, $37.0 \mathrm{mg}, 83 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $205-206{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$
NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.22$
(d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=3.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33$ (dd, $J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 178.2, 169.7, 162.4, 155.8, 151.6, 145.1, 142.9, $141.3,136.4,130.8,129.7,126.8,124.5,122.3,110.7,110.3,107.3,63.9,52.2,51.7$, 46.5, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Na} 458.0964$, found 458.0966 .

Methyl-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxo-4-(thiophen-2-yl)spiro[cyclo

 pentane-1,3'-indolin]-2-ene-2-carboxylate 40:

40 white solid, $35.6 \mathrm{mg}, 80 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.23(\mathrm{~m}$, $2 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}$, $J=4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.53(\mathrm{dd}, J=9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.3,169.6,162.4,155.9,146.9,141.9,141.4$, $136.2,131.1,129.7,127.6,126.8,125.8,125.5,124.4,122.3,110.4,64.1,55.4,52.3$, 47.9, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SNa} 474.0736$, found 474.0733.

Methyl-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-ox0-4-((E)-styryl)spiro[cyclopentane-

1,3'-indolin]-2-ene-2-carboxylate 4p:

4p white solid, $32.5 \mathrm{mg}, 73 \%$ yield, $\mathrm{dr}>15: 1$, m.p. $156-157{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) \delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.36(\mathrm{~m}$, $2 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.12$ (m, 2H), 6.93 (d, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{td}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.83-4.79(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $178.1,170.4,162.5,155.8,147.9,141.0,135.9,133.9,129.6,128.8,128.3,127.2$, 126.6, 124.4, 122.4, 109.9, 64.2, 52.5, 52.1, 51.4, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+$ $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na} 494.1328$, found 494.1325 .

Methyl-4-ethyl-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxospiro[cyclopentane-1,3'-

indolin]-2-ene-2-carboxylate 4q:

white solid, $32.2 \mathrm{mg}, 84 \%$ yield, dr $15: 1$, m.p. $160-161^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$
NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.1$
$\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.93$ (qd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (s, 3H), 2.35 (s, 3H), $1.87-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 179.1, 171.2, 162.7, 155.8, 149.2, 141.3, 134.9, 130.6, 129.4, 127.4 124.3, 122.1 110.1, 64.3, 52.0, 51.6, 49.7, 27.6, 12.2, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na} 420.1172$, found 420.1171 .

Methyl-5'-fluoro-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-0x0-4-phenylspiro[cyclo

 pentane-1,3'-indolin]-2-ene-2-carboxylate 4r:
white solid, $30.7 \mathrm{mg}, 80 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.37$ - 7.35 (m, $4 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=$ $8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.4,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.21(\mathrm{dd}, J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.7,169.7,162.4,158.6\left(\mathrm{~d}, J_{\mathrm{CF}}=240.0 \mathrm{~Hz}\right.$), $155.9,148.4,139.4,137.4,136.1,130.9,129.4,128.7\left(\mathrm{~d}, J_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right), 128.3,127.9$, $116.1\left(\mathrm{~d}, J_{\mathrm{CF}}=23.3 \mathrm{~Hz}\right), 112.3\left(\mathrm{~d}, J_{\mathrm{CF}}=24.9 \mathrm{~Hz}\right), 110.9\left(\mathrm{~d}, J_{\mathrm{CF}}=8.1 \mathrm{~Hz}\right), 64.6,55.2$, 53.0, 52.3, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{6} \mathrm{Na}$ 486.1077, found 486.1080.

Methyl-5'-chloro-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-ox0-4-phenylspiro[cyclo pentane-1,3'-indolin]-2-ene-2-carboxylate 4s:
 white solid, $31.4 \mathrm{mg}, 82 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.36(\mathrm{~m}$, $4 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=$
8.4, 2.4 Hz, 1H), 7.05 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (dd, $J=9.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 178.3,169.6,162.4,155.9,148.5,139.9,139.4,136.0,130.9,129.6$, 129.4, 128.9, 128.4, 127.9, 127.6, 124.8, 111.3, 64.3, 55.2, 53.0, 52.3, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{Na} 502.0782$, found 502.0780.

Methyl-5'-methyl-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-ox0-4-phenylspiro[cyclo

 pentane-1,3'-indolin]-2-ene-2-carboxylate 4t:
white solid, $30.7 \mathrm{mg}, 80 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $160-161^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.39$ (m, 2H), 7.36 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.69$ - $6.67(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 178.5, 170.2, 162.6, $155.9,147.9,139.8,138.7,136.4,131.8,130.8,129.8,129.3,128.2,128.0,127.2$, 125.1, 109.7, 64.3, 55.4, 52.9, 52.2, 21.1, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na} 482.1328$, found 482.1330.

Methyl-6'-fluoro-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxo-4-phenylspiro[cyclo pentane-1,3'-indolin]-2-ene-2-carboxylate 4u:

white solid, $29.9 \mathrm{mg}, 78 \%$ yield, $\mathrm{dr}>19: 1$, m.p. 209 $-210^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.33-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (dd, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $178.6,169.8,162.4,156.0,148.3,142.5,139.5,136.1,135.2,130.9,129.4,128.3$, 127.9, 125.6, 125.3, 122.4, 111.0, 63.8, 55.2, 53.1, 52.3, 11.6; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{Na} 502.0782$, found 502.0785.

Methyl-7'-fluoro-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxo-4-phenylspiro[cyclo

 pentane-1,3'-indolin]-2-ene-2-carboxylate 4v:
white solid, $28.8 \mathrm{mg}, 75 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$

NMR ($\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.29(\mathrm{~m}$, $1 \mathrm{H}), 7.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{dd}, J=$ $9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 177.5,169.9,162.4,156.0,148.4,146.8\left(\mathrm{~d}, J_{\mathrm{CF}}=243.5 \mathrm{~Hz}\right)$, $139.5,136.0,130.9,129.9\left(\mathrm{~d}, J_{\mathrm{CF}}=2.3 \mathrm{~Hz}\right), 129.4,128.7\left(\mathrm{~d}, J_{\mathrm{CF}}=12.6 \mathrm{~Hz}\right), 128.3$, $128.0,122.9\left(\mathrm{~d}, J_{\mathrm{CF}}=5.6 \mathrm{~Hz}\right), 120.1\left(\mathrm{~d}, J_{\mathrm{CF}}=2.4 \mathrm{~Hz}\right), 116.72\left(\mathrm{~d}, J_{\mathrm{CF}}=17.1 \mathrm{~Hz}\right), 64.4$, 55.3, 53.1, 52.3, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{6} \mathrm{Na}$ 486.1077, found 486.1079.

Methyl-7'-bromo-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxo-4-phenylspiro[cyclo pentane-1,3'-indolin]-2-ene-2-carboxylate 4w:

white solid, $27.6 \mathrm{mg}, 72 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}$, $4 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.26($ bro, 1 H$), 7.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}$, $J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 177.0,169.7,162.3,156.0,148.3,140.7,139.4,136.1,132.3$, $130.9,129.4,128.4,128.4,128.0,123.5,123.3,103.0,65.4,55.3,53.2,52.3,11.6 ;$ HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{BrO}_{6} \mathrm{Na}$ 546.0277, found 546.0280 .

Methyl-1'-benzyl-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxo-4-phenylspiro[cyclo pentane-1,3'-indolin]-2-ene-2-carboxylate 4x:

white solid, $34.5 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $174-175{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) \delta 7.45(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.41$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.36$ (m, 2H), $7.34-7.32$ (m, 2H), $7.31-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{td}, J=$ $7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.23(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 177.1, 170.3, 162.3, 155.8, 148.3, 130.7, 129.3, 129.3, 128.7, 128.1, 128.0,
127.6, 127.5, 126.8, 123.9, 122.3, 109.3, 64.0, 55.6, 52.8, 51.9, 44.8, 11.4; HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na} 558.1641$, found 558.1644.

Ethyl-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-oxo-4-phenylspiro[cyclopentane-1,3'-

indolin]-2-ene-2-carboxylate 4y:

white solid, $33.3 \mathrm{mg}, 87 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.01(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 178.6,170.2,162.0,155.8,147.8,141.2,139.8$, 136.5, 130.7, 129.4, 129.2, 128.1, 127.9, 127.3, 124.3, 122.2, 109.9, 64.2, 61.1, 55.3, 52.8, 13.8, 11.4; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na} 482.1328$, found 482.1330.

Methyl-5'-chloro-4-(4-isopropylphenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-ox0-spiro[cyclopentane-1,3'-indolin]-2-ene-2-carboxylate 4z:

$1 \mathrm{H}), 5.20(\mathrm{dd}, J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dt}, J=$ 13.8, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.2,169.7,162.3,155.8,149.0,148.7,139.8$, 136.6, 135.7, 130.9, 129.4, 128.9, 127.8, 127.4, 127.3, 124.7, 111.1, 64.2, 55.1, 52.6, 52.2, 33.8, 23.9, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{Na}$ 544.1251, found 544.1248.

spiro[cyclopentane-1,3'-indolin]-2-ene-2-carboxylate 4aa:

white solid, $30.7 \mathrm{mg}, 80 \%$ yield, $\mathrm{dr}>19: 1$, m.p. $>210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.8$ Hz, 2H), $7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dt}, J=$ $13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.3,169.8,162.4,155.9,149.1,148.8,140.4$, 136.7, 135.7, 132.4, 131.0, 129.4, 127.9, 127.5, 127.4, 114.7, 111.7, 64.3, 55.2, 52.7, 52.3, 33.9, 24.0, 24.0, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{6} \mathrm{Na} 588.0746$, found 588.0745.

Methyl-6'-chloro-4-(4-isopropylphenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-ox0-spiro[cyclopentane-1,3'-indolin]-2-ene-2-carboxylate 4ab:

white solid, $29.1 \mathrm{mg}, 76 \%$ yield, dr $15: 1$, m.p. $203-204{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dt}$, $J=13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 178.7, 169.9, 162.4, 155.9, 149.0, 148.6, 142.5, 136.7, 135.7, 135.0, 130.9, 127.7, 127.4, 125.6, 125.2, 122.2, 110.9, 63.7, 55.1, 52.6, 52.2, 33.8, 23.9, 23.9, 11.5; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{Na} 544.1251$, found 544.1254.

Methyl-6'-bromo-4-(4-isopropylphenyl)-5-(3-methyl-4-nitroisoxazol-5-yl)-2'-ox0-spiro[cyclopentane-1,3'-indolin]-2-ene-2-carboxylate 4ac:

$4 a c$
white solid, $29.9 \mathrm{mg}, 78 \%$ yield, dr $15: 1$, m.p. $>210^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.21 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=$
$7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=9.0$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dt}, J=13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ $(\mathrm{s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 178.6,170.0,162.5,156.0,149.1,148.7,142.6,136.8,135.8,131.0,127.9$, 127.5, 126.3, 125.6, 125.2, 123.1, 113.8, 63.9, 55.1, 52.7, 52.3, 33.9, 24.0, 24.0, 11.6; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{6} \mathrm{Na} 588.0746$, found 588.0743 .

5. Gram-scale synthesis of products 4 a

Scheme S1 Gram-scale synthesis of isoxazole-containing spirooxindole cyclopentene derivatives.

A gram-scale mixture of MBH carbonate 1a ($4.9 \mathrm{mmol}, 1.13 \mathrm{~g}$) with 4-nitro-5alkenylisoxazole $2 \mathbf{2 a}(5.4 \mathrm{mmol}, 2.34 \mathrm{~g}$) was added dimethylaminopyridine (DMAP, 20 $\mathrm{mol} \%$) in dichloromethane $(3.0 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred at -10 ${ }^{\circ} \mathrm{C}$ for about 8 hours. After the consumption of MBH carbonate 1a, the mixture was stirred at $-10^{\circ} \mathrm{C}$ followed by addition of trifluoroacetic acid (TFA, $100 \mathrm{~mol} \%$ in 1.0 mL DCM) and then moved to room temperature for about 2 hours. The mixture was stirred until the reaction had stopped progressing as observed by TLC analysis, then diluted with EtOAc and washed with saturated aqueous NaHCO_{3}, and brine. Then the solution was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$ to $3: 1$) to afford 1.02 g of the diastereochemical outcome 4a.

6. Crystal data of $\mathbf{4 g}$

Figure S1 X-ray crystal structure of $\mathbf{4 g}$. The thermal ellipsoids are drawn at a 50% probability level.

Single crystals suitable for XRD were obtained by vapor diffusion experiment: compound $\mathbf{4 g}$ was dissolved in 0.5 mL dichloromethane and 1.0 mL methanol in a glass vial, which was then placed in sealed glass container. Crystals were obtained in about 4-5 days.

Identification code	XX
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{6}$
Formula weight	524.31
Temperature $/ \mathrm{K}$	150
Crystal system	orthorhombic
Space group	Cmce
a / \AA	$8.7145(16)$
b / \AA	$15.395(3)$
c / \AA	$34.142(6)$
$\alpha /{ }^{\circ}$	90
$\beta /^{\circ}$	90
$\gamma /{ }^{\circ}$	90
$\mathrm{Volume} / \AA^{3}$	$4580.5(15)$
Z	8
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.521
μ / mm^{-1}	1.841
$\mathrm{~F}(000)$	2128.0
Crystal size $/ \mathrm{mm}^{3}$	$? \times ? \times ?$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$

2Θ range for data collection/ ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
5.502 to 55.04
$-9 \leq \mathrm{h} \leq 11,-19 \leq \mathrm{k} \leq 20,-43 \leq 1 \leq 42$
17773
$2743\left[\mathrm{R}_{\text {int }}=0.0562, \mathrm{R}_{\text {sigma }}=0.0460\right]$
2743/0/292
1.032
$\mathrm{R}_{1}=0.0509, \mathrm{wR}_{2}=0.0965$
$\mathrm{R}_{1}=0.1073, \mathrm{wR}_{2}=0.1162$
0.35/-0.39

7. NMR spectra

8. Experimental procedures of bioassays

8.1 FP-based (fluorescence polarization) MDM2 binding assay

The FP-based MDM2 assay were performed according to the previous reports and manufacturer's protocol. In brief, The fluorescent background were collected and calibrated by blank buffer, and the FP-values of tested compounds were determined by using a serial stock solution of compounds in DMSO. A test sample contained the test compounds, 10 nM of MDM2 binding proteins (preincubated) and 10 nM substrate peptide in buffer sulution were added into microplates until the final volume. For each experiment, the fluorescent intensities of tested samples were read on the microplate reader after all the smaple components were voetex mixed for 30 min . The inhibitory constant (Ki) was fitted by using the GraphPad Prism software.

8.2 Antiproliferation and selective cytotoxicity assays

The p53-wild HCT116 and LOVO colonrectal cancer cells, as well as the p53mutated SW620, SW480, DLD-1, HT-29 and SW1116 colonrectal cancer cells were selected to perform cytotoxicity assay. In brief, The LOVO cells were seeded in 96well plates with a density of 5×10^{3} cells per well and cultured with DMEM buffer under $5 \% \mathrm{CO}_{2}$ atomsphere at $37{ }^{\circ} \mathrm{C}$. For the antiprilferation assays, the tested compounds were added with a serial of concentrations. After 48-hours incubation, added $10 \mu \mathrm{~L}$ CCK8 (cell counting kit-8) solution into each well and then incubated 30-60 minutes. The OD values at 405 nm were collected by a microplate reader. And the IC_{50} values of
each compound were calculated by the GraphPad Prism software with Logicistic regression method.

8.3 Molecular docking

The initial coordinates of MDM2 were collected from the co-crystalized structure of MDM2-inhibtor (PDB No. 4LWU) retrieved from the PDB (Protein Data Bank, http://www.pdb.org) database. Then we utilized the CDOCKER module of Accelrys Discovery Studio 3.5 Package and the CDOCKER score function to compounds 3d into the substrate pocket of MDM2 using the protocol as described in our previous reports.

8.4 Western Blotting and immunofluorescent assays

LOVO cells were seeded into six-well plates with the intensities of $3-5 \times 10^{5}$ cells per well, after 48 h-incubation of compound $\mathbf{4 z}$ or blank solution, the cells were collected, washed twice by cold PBS buffer, and then added the protease and phosphatase inhibitors contained lysis buffer. The total protein lysates were obtained after 15000 rpm centrifugation for $10-15 \mathrm{~min}$. The protein extracts in each group were electrophoresis, transferred into PVDF membranes, incubated by corresponding primary antibodies and imaged by ECL method using the protocol as described in our previous reports. The intracellular ROS levels were detected with fluorescent probe DCF-DA ($2^{\prime}, 7^{\prime}$-dichlorofluorescein diacetate). In brief, LOVO cells were seeded into six-well plates, after added compound $\mathbf{4 z}$ and then incubated for another two hours, the DCF-DA probe were added and then observed by a microplate reader.

8.5 Flowcytometry based apoptosis assay

LOVO cells were seeded into six-well plates with the intensities of $3-5 \times 10^{5}$ cells per well, after 48 h -incubation of compound $\mathbf{4 z}$ or blank solution, the cells were harvested after trypsin digestion and then washed by ice-cold PBS twice. After coldcentrifuged and resuspended, cells were stained by annexin V-FITC/PI dual staining kit at $25^{\circ} \mathrm{C}$ for 30 min in dark. The stained cells were detected by a flow cytometer and analyzed by the FlowJo 7.6 software.

9. Predicted ADMET properties of $\mathbf{4 z}$

The predicted ADMET properties of compound 4 z , including aqueous solubility, blood-brain barrier penetration, CYP2D6 binding, hepatotoxicity, intestinal absorption, and plasma-protein binding, were calculated and predicted. The results of ADME analysis are presented in Figure $\mathbf{S 2}$ of the revised manuscript. The biplot figure showed two analogous 95% and 99% confidence ellipses for the blood-brain barrier penetration and human intestinal absorption models, respectively. The detailed results of pharmacokinetic properties for derivative 4 z are shown in Table $\mathbf{S 2}$.

Figure S2 Plot of PSA versus AlogP for compound $\mathbf{4 z}$ showing the 95% and 99% confidence limit ellipses corresponding to the blood-brain barrier and intestinal absorption models. Abbreviations: ADMET, absorption, distribution, metabolism, excretion and toxicity; AlogP, the logarithm of the partition coefficient between n-octanol and water; BBB , blood-brain barrier; PSA, polar surface area; 2D, two-dimensional

Table S3 ADMET prediction and pharmacokinetic properties of compound $4 z$

Compound name	Aqueous solubility level	BBB penetration level	CYP2D6 binding prediction	Hepatotoxicity prediction	Intestinal absorption level	Plasma protein binding	PSA	AlogP98
$4 z$	1 (Low)	3 (low)	False (noninhibitor)	False (nontoxic)	0 (good)	True (highly bounded)	68.91	4.49

Abbreviations: AlogP, the logarithm of the partition coefficient between n-octanol and water; PSA, polar surface area; ADMET, absorption, distribution, metabolism, excretion and toxicity.

10. References

(1) Y. M. Chung, Y. J. Im and J. N. Kim, Bull. Korean. Chem. Soc., 2002, 23, 16511654.
(2) J. Zhang, X. Liu, X. Ma and R. Wang, Chem. Commun., 2013, 49, 9329-9331.

