Supplementary Information for

Reversible Fluorescence Modulation through Photo-Isomerization of an Azobenzene-Bridged Perylene Bisimide Cyclophane

Guanghui Ouyang, David Bialas, and Frank Würthner

Table of contents

S1. General information 2
S2. Synthesis and characterization 3
S3. Supporting spectroscopic data 7
S4. Reference 15

S1. General information

Unless otherwise noted, chemical compounds were purchased from Aldrich, TCI and other commercial suppliers and were directly used without further purification. Column chromatography was performed on silica gel (particle size $0.040-0.063 \mathrm{~mm}$). NMR spectra were recorded on Bruker Avance III HD 400 MHz spectrometers. NMR data analysis are presented as following, s : singlet, d : doublet, $\mathrm{t}:$ triplet, $\mathrm{m}:$ multiplet, br : broad. Recycling gel permeation chromatography (GPC) was carried out on a Shimadzu semi-preparative recycling setup (eluent: CHCl_{3}). Mass spectra were measured on a microTOF focus instrument for high-resolution ESI (Bruker Daltronik GmbH). UV/Vis absorption spectra were recorded on JASCO V-670 and V-770 spectrometers. Fluorescence spectra and lifetime measurements were measured with an Edinburgh Instruments FLS980 spectrometer. Lifetimes were measured using EPL picosecond pulsed diode laser (505.8 nm) as a light source. Fluorescence quantum yields were obtained by using an integrating sphere. Theoretical calculations were performed by Gaussian 16 program 1 at B3LYP/6-31G(d,p) level. UV irradiation experiments were carried out in a Rayonet photochemical reactor with an RPR-3500A lamp (350 nm wavelength) and the samples were placed in cuvettes (light patch: 10 mm). Visible light experiments were performed with a white light lamp from NARVA type LT 80WT5/840 HQ.

S2. Synthesis and characterization

Scheme S1. Synthetic route of APC.
Synthesis of compound $\mathbf{6}^{2}$
Commercially available compound $\mathbf{1}$, 4-nitrobenylamine hydrochloride ($2.00 \mathrm{~g}, 10.60$ $\mathrm{mmol})$ and triethylamine ($4.42 \mathrm{~mL}, 31.80 \mathrm{mmol}$) were added into ethanol $(50 \mathrm{~mL})$ and stirred for 10 min at room temperature. Di-tert-butyl dicarbonate ($2.44 \mathrm{~mL}, 10.60 \mathrm{mmol}$) was then added and vigorously stirred at room temperature for 4 h . After the reaction was completed as monitored by TLC, the solvent was removed by rotary evaporation. The residue was dissolved in ethyl acetate and washed with distilled water for three times ($3 \times 100 \mathrm{~mL}$). The organic phase was collected and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solution was removed under reduced pressure and the crude product was purified by flash column chromatography (silica gel, EtOAc/hexane $=1: 2, \mathrm{v} / \mathrm{v}$) to give the final product as a yellow solid. $2.49 \mathrm{~g}(9.86 \mathrm{mmol})$, yield 93%. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=8.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.02$ (b, 1 H$), 4.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.

Synthesis of compound 7^{2}
Compound $6(6.05 \mathrm{~g}, 24.00 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.13 \mathrm{~g}, 1.20 \mathrm{mmol})$ were dispersed in EtOAc (50 mL). The mixture was stirred under hydrogen gas (1 atm) for 10 h at room temperature. The reaction process was monitored by TLC until complete conversion. Pd / C was filtered through Celite and the solvent was evaporated under
vacuum. The crude mixture was purified by flash column chromatography (silica gel, EtOAc/hexane $=1: 2, \mathrm{v} / \mathrm{v}$) and recrystallization (DCM) to give a white solid, 5.23 g $(23.5 \mathrm{mmol})$, yield $98 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \mathrm{ppm}$): $\delta=7.07(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.18(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.66$ (s, $2 \mathrm{H}, \mathrm{NH}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.

Synthesis of compound $\mathbf{2}^{2}$
Compound 7 ($444.5 \mathrm{mg}, 2.00 \mathrm{mmol}$), $\mathrm{CuBr}(84.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ and pyridine (17.4 $\mathrm{mg}, 0.18 \mathrm{mmol})$ were dissolved in toluene $(10 \mathrm{~mL})$ and the mixture was stirred at 65 ${ }^{\circ} \mathrm{C}$ overnight by using ambient oxygen as oxidant. After the reaction finished, toluene was removed under vacuum and the crude product was purified by column chromatography (silica gel, $\mathrm{DCM} / \mathrm{MeOH}=50: 1, \mathrm{v} / \mathrm{v}, \mathrm{R}_{\mathrm{f}}=0.5$ for trans-Azo, 0.3 for cis-Azo). Yellow solid, $793.0 \mathrm{mg}(1.80 \mathrm{mmol})$, yield $90 \%{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $298 \mathrm{~K}, \mathrm{ppm}): \delta=7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{br}, 1 \mathrm{H}), 4.41$ (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.

Synthesis of compound $\mathbf{3}^{2}$
Compound 2 ($140.0 \mathrm{mg}, 0.32 \mathrm{mmol}$) was dissolved in DCM (20 mL), then an excess amount of trifluoracetic acid (2 mL) was added and the mixture was stirred at room temperature for 30 min . The solvents were removed under vacuum to give the product as an orange solid, $144.2 \mathrm{mg}(0.31 \mathrm{mmol})$, yield $97 \%{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO, $298 \mathrm{~K}, \mathrm{ppm}): \delta=8.44(\mathrm{br}, 6 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.07$ (br, 4H).

Synthesis of compound $\mathbf{8}^{3}$
1,6,7,12-tetrachloro perylene-3,4:9,10-tetracarboxylic acid bisanhydride $4(4.00 \mathrm{~g}, 8.00$ $\mathrm{mmol})$ was dispersed in water $(150 \mathrm{~mL})$, then adding cyclohexylamine $(10 \mathrm{~mL})$ and the mixture was refluxed overnight. After cooling to room temperature, 200 mL water was added and the mixture was filtered. The precipitate was washed with water and dried in vacuum to give a dark red solid, $4.99 \mathrm{~g}(7.20 \mathrm{mmol})$, yield 90%. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}, \mathrm{ppm}\right): \delta=8.64(\mathrm{~s}, 4 \mathrm{H}), 5.06(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 8 \mathrm{H}), 1.94-1.31(\mathrm{~m}, 12 \mathrm{H})$.

Synthesis of compound $\mathbf{9}^{3}$
Compound 8 ($1.38 \mathrm{~g}, 2.00 \mathrm{mmol}$), 4-tert-butylphenol ($3.00 \mathrm{~g}, 20.00 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(3.00 \mathrm{~g}, 22.00 \mathrm{mmol})$ were refluxed in 100 mL NMP under argon atmosphere for 24 h . After cooling to room temperature, 100 mL water was added and the mixture was filtrated to give a cyan red solid, $1.72 \mathrm{~g}(1.50 \mathrm{mmol})$, yield 75%. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}, \mathrm{ppm}\right): \delta=8.19(\mathrm{~s}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 8 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8,8 \mathrm{H})$, $4.97(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 4 \mathrm{H}), 1.85(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{~m}, 6 \mathrm{H}), 1.39(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{~s}, 36 \mathrm{H})$.

Synthesis of compound 5^{3}

Compound 9 ($849.0 \mathrm{mg}, 0.74 \mathrm{mmol}$) was added to alcoholic $\mathrm{KOH}(6.0 \mathrm{~g} \mathrm{KOH}, 3 \mathrm{~mL}$ $\mathrm{H}_{2} \mathrm{O}, 60 \mathrm{~mL}$ tert-butyl alcohol) and stirred under reflux overnight. After cooling down to room temperature, the organic layer was collected and maintained in 2 M HCl for 8 h. The red-brown precipitate was filtered, washed with water and dried in vacuum. The crude product was purified by column chromatography (silica gel, DCM to $\mathrm{DCM} / \mathrm{MeOH} \mathrm{v} / \mathrm{v} 50: 1$) to give a red-brown solid, 496.0 mg (0.50 mmol), yield 68%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \mathrm{ppm}$): $\delta=8.21(\mathrm{~s}, 4 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 8 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.8,8 \mathrm{H}), 1.30(\mathrm{~s}, 36 \mathrm{H})$.

Synthesis of APC
Equal equivalents of $\mathbf{3}(105.4 \mathrm{mg}, 50.8 \mu \mathrm{~mol})$ and $\mathbf{5}(50.0 \mathrm{mg}, 50.8 \mu \mathrm{~mol})$ were refluxed in anhydrous toluene (300 mL) under nitrogen atmosphere for 16 h in the presence of excess imidazole ($1.35 \mathrm{~g}, 19.8 \mathrm{mmol}$). After purification by flash column chromatography and recycling gel permeation chromatography (GPC), 30.1 mg APC was obtained as a reddish brown solid: $15.1 \mathrm{mg}(6.35 \mu \mathrm{~mol} ; 24.9 \%$ yield). Melting point $>300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 360 \mathrm{~K}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl} 4\right): \delta=8.22(\mathrm{~s}, 8 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 8 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 8 \mathrm{H}), 7.28(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 16 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 16 \mathrm{H}), 5.41(\mathrm{~s}, 8 \mathrm{H}), 1.36(\mathrm{~s}, 72 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, 360 \mathrm{~K}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl} 4\right)$: $\delta=163.3,156.2,153.1,152.5,147.8,140.6,133.0,130.4,126.8,123.1,122.7,121.0$, $120.4,119.8,119.5,77.5,43.2,34.5,31.7 \mathrm{ppm}$; HR-MS (ESI, pos. mode, acetonitrile/chloroform 1:1) : m/z calculated for $\mathrm{C}_{156} \mathrm{H}_{137} \mathrm{~N}_{8} \mathrm{O}_{16}$: $2378.01471[\mathrm{M}+\mathrm{H}]^{+}$, found: 2378.01840; UV-vis $\left(\mathrm{CHCl}_{3}, c_{0}=5 * 10^{-6} \mathrm{M}\right)$: $\lambda_{\text {max }}\left(\varepsilon_{\max }\right)=587 \mathrm{~nm}\left(74400 \mathrm{M}^{-1}\right.$ cm^{-1}), $559 \mathrm{~nm}\left(49740 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; Fluorescence $\left(\mathrm{CHCl}_{3}, c_{0}=6.3 * 10^{-7} \mathrm{M}\right)$: $\lambda_{\text {max }}=626$ $\mathrm{nm}\left(\lambda_{\mathrm{ex}}=545 \mathrm{~nm}\right)$, FLQY (0.16 in DCM).

Fig. S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of APC ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 360 \mathrm{~K}$).

Fig. S2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of APC $\left(101 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 360 \mathrm{~K}\right)$.

Fig. S3. HR-ESI mass spectrum of APC, $\mathrm{CHCl}_{3} / \mathrm{MeCN}=1: 1$.

S3. Supporting spectroscopic data

Fig. S4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of APC at different temperatures, $400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$. The broadening of some protons at 298 K in attributed to the barrier for the interconversion of P / M-atropoisomers of tetraphenoxy-PBIs. ${ }^{4}$

Trans-2

Cis-2

Fig. S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of reference azobenzene 2, a) after and b) before UV irradiation. $298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}$. [2] $=1 \times 10^{-3} \mathrm{M}$.

According to the NMR signal change of protons 1, the trans \rightarrow cis transformation ratio of reference compound $\mathbf{2}$ is about $\operatorname{Integral}\left(1^{\prime}\right) /\left(\operatorname{Integral}(1)+\operatorname{Integral}\left(1^{\prime}\right)\right)=9.11$ $/(9.11+4.07)=69.1 \%$.

Absorption at 333 nm
Trans-2 : 25.90
PSS-2 : 7.20
Conversion:
(25.90-7.20)/25.9 = 72.2 \%

Fig. S6. UV-vis absorption spectra of compound 2 before (black line) and after (red line) UV irradiation. DCM, $298 \mathrm{~K}, 5.0 \times 10^{-6} \mathrm{M}$.

According to the absorption change of trans-azobenzene at 330 nm , the trans \rightarrow cis transformation ratio is calculated to be (25.90-7.20) / $25.9=72.2 \%$, which is consistent with the ratio derived from NMR spectra.

Absorption at 333 nm
Trans-2 : 38.27
PSS-2 : 15.93
Ref-PBI: 7.92
Conversion:
$(38.27-15.93) /(38.27-7.92)=73.6 \%$

Fig. S7. UV-vis spectra of mixture of Ref-PBI and azobenzene 2, $[$ Ref-PBI] $=[2]=$ $2.5 \times 10^{-6} \mathrm{M}$ in DCM, 298 K . Black line: absorption spectrum of Ref-PBI/2 mixture, Red line: absorption spectrum of Ref-PBI/2 mixture after UV irradiation for 1 min . Blue line: absorption spectrum of Ref-PBI.

We further measured the UV-vis absorption spectra of a 1:1 mixture of Ref-PBI and azobenzene 2. According to the absorption change of compound 2, the trans \rightarrow cis transformation ratio is determined as $(38.27-15.93) /(38.27-7.92)=73.6 \%$, which is consistent with the result obtained for individual azobenzene 2.

Fig. S8. UV-vis absorption spectra of cyclophane APC in CHCl_{3} a) after different UV light irradiation times, b) after different visible light irradiation times following UV irradiation for 60 seconds, c) upon alternating UV (1 min) and visible light (3 min) irradiation. d) Change of absorption intensity of APC at 328 nm upon alternating UV (1 min) and visible light irradiation (3 min). $[\mathbf{A P C}]=3.7 \times 10^{-5} \mathrm{M} \mathrm{in}^{\mathrm{CHCl}} 3,298 \mathrm{~K}$. UV light source: RPR-3500A lamp (350 nm wavelength); visible light source: white light lamp NARVA (type LT 80WT5/840 HQ).

Fig. S9. Time-dependent fluorescence spectra of cyclophane APC after different UV irradiation times in chloroform at 298 K ; conc. $1 \times 10^{-6} \mathrm{M}$.

Fig. S10. a) UV/Vis absorption spectra used for determination of trans \rightarrow cis isomerization ratio at photo-stationary state under UV irradiation of cyclophane APC in chloroform at $298 \mathrm{~K} ;[\mathbf{A P C}]=3.7 \times 10^{-5} \mathrm{M}$. Red line: absorption of trans-APC, blue line: absorption of PSS-APC, black line: normalized absorption of ref-PBI, [ref-PBI] $=5 \times 10^{-6} \mathrm{M}$ in chloroform at 298 K . The absorption spectrum of ref-PBI was normalized according to the absorption maximum of APC at 589 nm . b) UV-vis absorption spectra of ref-PBI and azobenzene 2, $[$ ref-PBI $]=[2]=5 \times 10^{-6} \mathrm{M}$ in chloroform at 298 K .

Due to the interchromophoric interactions and probably some residual of solvent molecules in the cyclophane, the molar extinction coefficient of APC at 328 nm ($46.40 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, Fig. S8a) is obviously smaller than that of the sum of two equivalents of individual azobenzene 2 and ref-PBI at $328 \mathrm{~nm}(2 * 21.1+2 * 7.3)$ $* 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}=56.8 * 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ (Fig. S10 b). To obtain the absorption contribution of azobenzene in APC at 328 nm , we need to subtract the absorption contribution of PBI moieties at 328 nm . Considering the azobenzene chromophores do not show absorption in the range of the absorption maximum of APC ($\lambda_{\max }=589 \mathrm{~nm}$), we can roughly get the absorption contribution of PBI moieties in APC at 328 nm from the normalized absorption spectrum of ref-PBI (Fig. S10a, black line). Accordingly, the absorption of the PBI moieties is 0.206 and the absorption contribution of transazobenzene moieties is $0.633-0.206=0.427$. After UV irradiation, the change of trans-azobenzene absorption is $0.633-0.513=0.12$. Hence, the trans \rightarrow cis isomerization ratio can be estimated as $0.12 / 0.427=28 \%$, which is in good consistent with the value calculated from the NMR data (Fig. S11).

Fig．S11．NMR spectra of cyclophane APC and PSS－APC in $\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 400 \mathrm{MHz}$ ．
After UV irradiation，the aromatic protons a in close proximity to the $\mathrm{N}=\mathrm{N}$ bond showed changes from which the trans \rightarrow cis isomerization ratio can be calculated to be $\operatorname{Integral}\left(\mathbf{a}^{*}\right) /\left(\operatorname{Integral}\left(\mathbf{a}^{*}\right)+\operatorname{Integral}(\mathbf{a})\right)=22.0 \%$ ，where \mathbf{a}^{*} is the corresponding azobenzene proton a after UV irradiation（i．e．of cis－Azo）．

Absorption at 333 nm
APC ： 0.373
PSS－APC： 0.185
PBI moieties ~ 0.138
Conversion：
（0．373－0．185）／（0．373－0．138）～ 80%

Fig．S12．UV－vis absorption spectra of APC and PSS－APC．［APC］$=8.6 \times 10^{-6} \mathrm{M}$ in DCM， $298 \mathrm{~K} .[\mathbf{r e f}-\mathbf{P B I}]=[\mathbf{2}]=5.0 \times 10^{-6} \mathrm{M}$ in DCM ．

Following the same procedure as applied to the data shown in Fig．S10，the trans \rightarrow cis transformation ratio of APC in dichloromethane was calculated to be 80% ．

Table S1. Fluorescence quantum yield (FLQY) of trans-APC and photo-stationary PSS-APC after UV irradiation for different excitation wavelengths.

	trans-APC	PSS-APC
$\lambda_{\mathrm{Ex}}=510 \mathrm{~nm}$	16%	7%
$\lambda_{\mathrm{Ex}}=350 \mathrm{~nm}$	16%	10%

Notes: photo-stationary state was obtained by UV irradiation for 5 min . FLQY was measured by using an integrating sphere, $298 \mathrm{~K},[\mathbf{A P C}]=1 * 10^{-6} \mathrm{M}, \mathrm{DCM}$.

Fig. S13. Illustration of energy levels of trans-trans APC and cis-cis APC. The values were obtained from DFT calculations (Gaussian 09, B3LYP 6-31G(d,p) level).

Fig. S14. Illustration of molecular orbitals of trans-trans APC (B3LYP 6-31G(d,p) level). All hydrogen atoms are omitted for clarity.

LUMO (-3.095 eV)

LUMO +1 (-3.073 eV)

LUMO +2 (-1.903 eV)

LUMO+3 (-1.875 eV)

HOMO (-5.361 eV)

HOMO-1 (- 5.382 eV)

номо-2 (- 5.455 eV)

HOMO-3 (-5.463 eV)

Fig. S15. Illustration of molecular orbitals of cis-cis APC (B3LYP 6-31G(d,p) level). All hydrogen atoms are omitted for clarity.

Fig. S16. Guest molecules utilized for host-guest studies.

Fig. S17. UV-vis and FL spectra of APC and PSS-APC for titration experiments. a) UV-vis spectra of PSS-APC and PSS-APC/1,5-dimethoxynaphthalene. b) FL spectra of APC and PSS-APC before and after adding 200 eq. of 1,5-dimethoxynaphthalene. $[\mathbf{A P C}]=1 * 10^{-5} \mathrm{M}$ in DCM, 298 K .

S4. Reference

1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W.

Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. C. 01 .
2. Y. R. Choi, G. C. Kim, H. G. Jeon, J. Park, W. Namkund and K. Jeong, Azobenzene-based chloride transporters with light-controllable activities, Chem. Coттии. 2014, 50, 15305-15308.
3. D. Dotcheva, M. Klapper and K. Müllen, Soluble polyimides containing perylene units, Macromol. Chem. Phys. 1994, 195, 1905-1911.
4. P. Osswald, F. Würthner, Effects of Bay Substituents on the Racemization Barriers ofPerylene Bisimides: Resolution of Atropo-Enantiomers, J. Am. Chem. Soc. 2007, 129, 14319-14326.

