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Section S1 Detailed information about the transformer model

S1.1 SMILES tokenization

The SMILES tokenization is a specific language that explicitly describes molecular 
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structures in strings and the input tokens and output tokens are converted to vectors 
in transformer model.1-2 For the vocabulary files automatically generated by the 
model contain input tokens and output tokens of our model can be found in 
https://github.com/hongliangduan/Transformer-model-for-prediction-in-low-
chemical-data-regimes.

In the course of experiment, the reactions are translated to SMILES and inputted 
to the transformer model. And the outputting tokens from the model are also a 
sequence of SMILES. 

S1.2 Hyperparameters of the models

Before using the transformer model to predict the target of Baeyer-Villiger reaction, 
we first debugged and adjusted the hyperparameters of the transformer model based 
on the previous work of our laboratory which solve reaction predictions task. [3] 

In the pretraining step, the transformer model is trained on a general chemical 
reaction dataset in which containing 380k data to obtain the basic chemical 
information. With the model being pretrained to a certain degree, the model can be 
applied to training dataset of Baeyer-Villiger for capturing the feature of Baeyer-
Villiger reaction. Finally, the training process is stopped when the reaching a steady 
state. 

Here are hyperparameters selections of the transformer models:
"activation_dtype": "float32"
"add_relative_to_values": false
"attention_dropout": 0.1
"attention_dropout_broadcast_dims": ""
"attention_key_channels": 0
"attention_value_channels": 0
"attention_variables_3d": false
"batch_size": 6144
"causal_decoder_self_attention": true
"clip_grad_norm": 0.0
"compress_steps": 0
"conv_first_kernel": 3
"daisy_chain_variables": true
"data_dir":"./t2t_data"
"dropout": 0.2
"eval_drop_long_sequences": false
"eval_run_autoregressive": false
"eval_steps": 100
"factored_logits": false
"ffn_layer": "dense_relu_dense"
"filter_size": 2048
"force_full_predict": false
"grad_noise_scale": 0.0
"heads_share_relative_embedding": false
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"hidden_size": 256
"initializer": "uniform_unit_scaling"
"initializer_gain": 1.0
"input_modalities": "default"
"kernel_height": 3
"kernel_width": 1
"label_smoothing": 0.1
"layer_postprocess_sequence": "da"
"layer_prepostprocess_dropout": 0.3
"layer_prepostprocess_dropout_broadcast_dims": ""
"layer_preprocess_sequence": "n"
"learning_rate": 0.2
"learning_rate_constant": 2.0
"learning_rate_cosine_cycle_steps": 250000
"learning_rate_decay_rate": 1.0
"learning_rate_decay_scheme": "noam"
"learning_rate_decay_staircase": false
"learning_rate_decay_steps": 5000
"learning_rate_minimum": null
"learning_rate_schedule":"constant*linear_warmup*rsqrt_decay*rsqrt_hiden_size"
"learning_rate_warmup_steps": 16000
"length_bucket_step": 1.1
"max_input_seq_length": 0
"max_length": 256
"max_relative_position": 0
"max_target_seq_length": 0
"min_length": 0
"min_length_bucket": 8
"model_dir":“./t2t_train/translate_retro_syn/transformer-
transformer_base_single_gpu"
"moe_hidden_sizes": "2048"
"moe_k": 2
"moe_loss_coef": 0.001
"moe_num_experts": 16
"moe_overhead_eval": 2.0
"moe_overhead_train": 1.0
"multiply_embedding_mode": "sqrt_depth"
"multiproblem_class_loss_multiplier": 0.0
"multiproblem_label_weight": 0.5
"multiproblem_mixing_schedule": "constant"
"multiproblem_reweight_label_loss": false
"multiproblem_schedule_max_examples": 10000000.0
"multiproblem_schedule_threshold": 0.5
"nbr_decoder_problems": 1
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"no_data_parallelism": false
"norm_epsilon": 1e-06
"norm_type": "layer"
"num_decoder_layers": 0
"num_encoder_layers": 0
"num_heads": 8
"num_hidden_layers": 6
"optimizer": "Adam"
"optimizer_adafactor_beta1": 0.0
"optimizer_adafactor_beta2": 0.999
"optimizer_adafactor_clipping_threshold": 1.0
"optimizer_adafactor_decay_type": "pow"
"optimizer_adafactor_factored": true
"optimizer_adafactor_memory_exponent": 0.8
"optimizer_adafactor_multiply_by_parameter_scale": true
"optimizer_adam_beta1": 0.9
"optimizer_adam_beta2": 0.997
"optimizer_adam_epsilon": 1e-09
"optimizer_momentum_momentum": 0.9
"optimizer_momentum_nesterov": false
"optimizer_multistep_accumulate_steps": null
"parameter_attention_key_channels": 0
"parameter_attention_value_channels": 0
"pos": "timing"
"prepend_mode": "none"
"pretrained_model_dir": ""
"proximity_bias": false
"relu_dropout": 0.1
"relu_dropout_broadcast_dims": ""
"sampling_method": "argmax"
"sampling_temp": 1.0
"schedule": "continuous_train_and_eval"
"scheduled_sampling_gold_mixin_prob": 0.5
"scheduled_sampling_prob": 0.0
"scheduled_sampling_warmup_steps": 50000
"self_attention_type": "dot_product"
"shared_embedding": false
"shared_embedding_and_softmax_weights": true
"split_to_length": 0
"summarize_grads": false
"summarize_vars": false
"symbol_dropout": 0.0
"symbol_modality_num_shards": 16
"symbol_modality_skip_top": false
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"target_modality": "default"
"train_steps": 2000000
"use_fixed_batch_size": false
"use_pad_remover": true
"use_target_space_embedding": true
"video_num_input_frames": 1
"video_num_target_frames": 1
"vocab_divisor": 1
"warm_start_from": null
"weight_decay": 0.0
"weight_dtype": "float32"
"weight_noise": 0.0

Section S2 Preparation of Baeyer-Villiger reaction

The Baeyer-Villiger reaction dataset we filtered out from the Reaxys database is 
splatted into three parts: training, validation and test dataset. We make further 
analysis of the Baeyer-Villiger reaction dataset' classification to confirm the 
effectiveness of the transformer-baseline, transformer-transfer learning and 
transformer-transfer learning with onefold SMILES augmentation models. According 
to the classification of functional groups containing in the reactants of the Baeyer-
Villiger reaction, the reactions can be divided into two types: the one is reaction with 
aldehyde compound as reactant and another one is reactions with ketone compounds 
as reactant. Table S1 shows the detailed distributions of reactions in the three dataset 
we used to pretrain, valid and test the performance of the transformer-baseline, 
transformer-transfer learning and transformer-transfer learning with onefold SMILES 
augmentation models. In the limited dataset composed of 2254 Baeyer-Villiger 
reaction, there are 392 reactions of aldehyde compound as reactants and 1862 
reactions are ketone compound as reactants. The number of reactions in which the 
aldehyde compounds are referred to as reactants accounts for 77.0% of the total 
training dataset, and this kind of reactions correspond correspondingly accounts for 
11.5% in the validation and test dataset, respectively. As for the Baeyer-Villiger 
reaction with the ketone compounds as reactants, they account for 80.6% in the 
training dataset and 19.4% of reactions of ketone reactants are equally divided into 
Validation and test dataset. In other words, the distributions of reactions with splitting 
into three datasets is in accord with the scaffold splitting condition.

Table S1. The detailed classifications of Baeyer-Villiger reaction by reactants' type on training, 
validation and test dataset. 

Reactant type
Dataset

aldehyde compound ketone compounds
Total

Training dataset 302 1501 1803
Validation dataset 45 181 226



6

Test dataset 45 180 225
Total 392 1862 2254

Section S3 Analysis of cross-validations experiments

S3.1 Cross-validations of transformer models on Baeyer-Villiger reaction dataset

In order to avoid the contingency of models' performance caused by the data splitting, 
such as prediction results depend too much on favourable or adverse data splitting 
procedure, we randomly split the Baeyer-Villiger reaction dataset for ten times and do 
experiments, respectively. The detailed top-n accuracies of transformer-baseline 
(trained and tested on Baeyer-Villiger reaction dataset), transformer-transfer learning 
(pretrained and trained on general chemical reaction and Baeyer-Villiger reaction 
datasets respectively, and tested on Baeyer-Villiger reaction dataset), transformer-
transfer learning with different levels SMILES augmentation models are described in 
Table S2, Table S3, Table S4, Table S5 and Table S6. Furthermore, we list the average 
top-n accuracies of these models in Table S7. All of the average top-1 accuracies of 
transformer-baseline, transformer-transfer learning, transformer-transfer learning 
with data augmentation models demonstrate that these models could be applied into 
reaction predictions. In addition, the transformer-transfer learning model achieves 
around 25% improvement and transformer-transfer learning with data augmentations 
further improves 3.8% in finishing this task. To some extent, with the introduction of 
pretraining knowledge obtained from transfer learning and SMILES augmentation 
strategy, the transformer-baseline model expresses a better performance on 
addressing the limitation of small data in chemistry field. It is clear that transfer 
learning and data augmentation play a critical role in promoting the transformer 
model's ability of predicting reaction, and the transformer model does not achieve 
good results by pretrained only on big data (general chemical reaction dataset) rather 
than trained on specific Baeyer-Villiger reaction dataset.

Table S2. The top-n accuracies of transformer-baseline models.

Transformer-baseline model
Entry

Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)

1 58.4 66.7 68.4 71.1
2 58.4 67.7 70.8 71.2
3 55.7 66.1 68.3 69.1
4 53.3 62.2 65.8 67.5
5 56.4 64.8 69.4 68.5
6 54.5 63.5 65.3 67.4
7 56.7 67.2 68.2 70.3
8 58.2 67.8 70.1 71.6
9 59.2 66.3 65.7 67.4
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10 53.6 62.9 65.2 67.2
average 56.4 65.5 67.7 69.1

Table S3. The top-n accuracies of transformer-transfer learning model.

Transformer-transfer learning model 
Entry

Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)

1 81.8 86.2 89.3 90.7
2 81.4 88.9 91.5 94.2
3 81.0 88.4 90.7 93.1
4 81.3 88.9 90.2 92.0
5 84.0 88.0 90.2 92.7
6 82.2 89.1 90.5 92.4
7 81.7 88.5 90.6 93.5
8 82.5 88.7 90.4 92.9
9 80.7 89.0 90.7 93.1

10 81.6 88.3 91.2 92.8
average 81.8 88.4 90.5 92.7

Table S4. The top-n accuracies of transformer-transfer learning model with onefold augmentation.

Transformer-transfer learning with onefold augmentation 
Entry

Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)

1 86.7 92.4 94.2 94.2
2 84.0 91.5 91.6 93.6
3 85.7 91.1 91.6 92.9
4 86.2 91.6 93.7 94.2
5 85.1 90.5 92.8 92.8
6 85.2 90.3 92.1 93.9
7 84.7 89.9 91.7 92.4
8 85.6 91.3 92.5 92.7
9 85.4 91.9 94.1 94.2

10 86.3 92.2 93.7 93.7
average 85.5 91.3 92.8 93.5

Table S5. The top-n accuracies of transformer-transfer learning model with twofold augmentation 
model.

Entry Transformer-transfer learning with twofold augmentation 
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Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)

1 84.0 92.4 94.2 94.2
2 82.8 90.1 92.6 92.5
3 81.3 89.5 93.5 93.9
4 81.9 89.5 91.6 92.7
5 82.4 90.3 92.4 93.6
6 83.5 91.4 92.5 92.7
7 81.6 90.2 93.1 93.0
8 82.9 91.7 94.0 94.5
9 83.5 91.7 92.7 93.2

10 83.2 92.0 93.5 93.7
average 82.7 90.9 93.0 93.4

Table S6. The top-n accuracies of transformer-transfer learning model with fourfold augmentation 
model.

Transformer-transfer learning with fourfold augmentation 
Entry

Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)

1 82.7 90.2 93.3 94.2
2 82.8 90.9 93.6 94.5
3 81.3 89.8 92.4 93.1
4 82.4 90.3 92.8 93.8
5 81.9 89.4 91.5 92.9
6 82.3 89.9 90.7 92.3
7 82.1 89.7 92.1 94.1
8 81.5 90.3 93.3 94.7
9 81.7 88.5 92.1 93.2

10 83.0 91.2 92.4 94.0
average 82.2 90.0 92.4 93.7

Table S7. The average accuracies of top-n on transformer-baseline, transformer-transfer learning, 
transformer-transfer learning with three level SMILES augmentations. 
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S3.2 Analysis of recurrent neural network baseline model

To make the results more convincing, we perform this experiment on a recurrent 
neural network model. The recurrent neural network model is a neural machine 
translation (NMT) model to reaction prediction, which has been used by Liu et al. to 
perform retrosynthesis reaction prediction.[4] Duan et al. also used this model in their 
work to accomplish the task of reaction prediction.[5] Table S8 list the results of 
recurrent neural network baseline model based on the corresponding task with 
transformer-transfer learning model integrated with onefold augmentation. For 
example, the average top-1 accuracy of recurrent neural network-transfer learning 
model with onefold augmentation is 75.4%, and average accuracies of top-2, top-3, 
top-5 are 79.9%, 81.6%,86.1%. respectively, which are 6%~9% lower than the 
transform-er-transfer learning with onefold augmentation. Furthermore, our previous 
work has demonstrated the transformer model is more superiority than the recurrent 
neural network baseline model.[6]

Table S8. The top-n accuracies of cross-validation results by recurrent neural network baseline 
model. 

Recurrent Neural Network Baseline Modela
Entry

Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)

1 75.1 80.9 83.1 90.7
2 75.7 78.8 80.8 84.0
3 73.8 76.4 79.1 91.5
4 72.4 77.7 78.2 78.6
5 78.6 83.5 85.8 86.7
6 76.1 81.8 83.5 85.3
7 73.3 77.9 79.6 84.0
8 75.5 80.0 81.9 86.7
9 76.7 81.3 82.7 88.4

10 76.4 80.4 81.4 84.9
average 75.4 79.9 81.6 86.1

The average accuracies of top-n 
Model

Top-1 Top-2 Top-3 Top-5
Transformer-baseline model 56.4 65.5 67.7 89.1

Transformer-transfer learning model 81.8 88.4 90.5 92.9
Transformer-transfer learning model 

with data augmentation ×1
85.5 91.3 82. 93.5

Transformer-transfer learning model 
with data augmentation ×2

82.7 90.8 93.0 93.4

Transformer-transfer learning model 
with data augmentation ×4

82.2 90.0 92.4 93.7
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aThe baseline model refers to that the sequence-to-sequence model with transfer learning and 
onefold data augmentation.

Section S4 Analysis of top-2 predictions

The top-n represents that once the rank1 to rank n predictions are found, the 
prediction results of the model scan will stop. The Baeyer-Villiger reaction is an oxygen 
insertion reaction, which has two potential reaction sites for the reaction with ketone 
compounds as reactants. Therefore, we concern more about its’ top-2 predictions. 

For transformer-transfer learning model, the top-2 accuracy is 86.2%. We make 
further analysis based on the correctly top-2 predictions. In the rank1 predictions, the 
correctly predictions accounts for 89.7%, and the rest of right products appear in the 
rank2. Furthermore, the predictions which the rank 1 predicts correctly and rank2 
meets the regioselectivity of Baeyer-Villiger reaction account for 28.3%. On the other 
hand, for these correct reactions with rank1 fitting the regioselectivity account for 
8.2% in the top-2 prediction of transformer-transfer learning model.

For transformer-transfer learning model with onefold augmentation, the top-2 
accuracy is 92.4%. The result of rank1 prediction indicate that the correctly predictions 
accounts for 93.2%. Moreover, for the predictions that either rank1 or rank2 meets 
regioselectivity account for 22.4%.
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