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Section S1 Detailed information about the transformer model

$1.1 SMILES tokenization
The SMILES tokenization is a specific language that explicitly describes molecular
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structures in strings and the input tokens and output tokens are converted to vectors
in transformer model.»? For the vocabulary files automatically generated by the
model contain input tokens and output tokens of our model can be found in
https://github.com/hongliangduan/Transformer-model-for-prediction-in-low-
chemical-data-regimes.

In the course of experiment, the reactions are translated to SMILES and inputted
to the transformer model. And the outputting tokens from the model are also a
sequence of SMILES.

$1.2 Hyperparameters of the models

Before using the transformer model to predict the target of Baeyer-Villiger reaction,
we first debugged and adjusted the hyperparameters of the transformer model based
on the previous work of our laboratory which solve reaction predictions task. 3!

In the pretraining step, the transformer model is trained on a general chemical
reaction dataset in which containing 380k data to obtain the basic chemical
information. With the model being pretrained to a certain degree, the model can be
applied to training dataset of Baeyer-Villiger for capturing the feature of Baeyer-
Villiger reaction. Finally, the training process is stopped when the reaching a steady
state.

Here are hyperparameters selections of the transformer models:
"activation_dtype": "float32"

"add_relative_to_values": false

"attention_dropout": 0.1

"attention_dropout_broadcast_dims": ""
"attention_key_channels": 0
"attention_value_channels": 0
"attention_variables_3d": false
"batch_size": 6144
"causal_decoder_self attention": true
"clip_grad_norm": 0.0
"compress_steps": 0
"conv_first_kernel": 3
"daisy_chain_variables": true
"data_dir":"./t2t_data"

"dropout": 0.2
"eval_drop_long_sequences": false
"eval_run_autoregressive": false
"eval_steps": 100

"factored_logits": false

"ffn_layer": "dense_relu_dense"
"filter_size": 2048
"force_full_predict": false
"grad_noise_scale": 0.0
"heads_share_relative_embedding": false



"hidden_size": 256

"initializer": "uniform_unit_scaling"
"initializer_gain": 1.0
"input_modalities": "default"
"kernel_height": 3

"kernel_width": 1

"label_smoothing": 0.1
"layer_postprocess_sequence": "da"
"layer_prepostprocess_dropout": 0.3
"layer_prepostprocess_dropout_broadcast_dims": ""
"layer_preprocess_sequence": "n"
"learning_rate": 0.2
"learning_rate_constant": 2.0
"learning_rate_cosine_cycle_steps": 250000
"learning_rate_decay_rate": 1.0
"learning_rate_decay_scheme": "noam"
"learning_rate_decay_staircase": false
"learning_rate_decay_steps": 5000
"learning_rate_minimum": null
"learning_rate_schedule":"constant*linear_warmup*rsqrt_decay*rsqrt_hiden_size"
"learning_rate_warmup_steps": 16000

"length_bucket_step": 1.1

"max_input_seq_length": 0

"max_length": 256

"max_relative_position": 0

"max_target_seq_length": 0

"min_length": 0

"min_length_bucket": 8
"model_dir":“./t2t_train/translate_retro_syn/transformer-
transformer_base_single_gpu"

"moe_hidden_sizes": "2048"

"moe_k": 2

"moe_loss_coef": 0.001

"moe_num_experts": 16

"moe_overhead_eval": 2.0

"moe_overhead_train": 1.0

"multiply_embedding_mode": "sqrt_depth"
"multiproblem_class_loss_multiplier": 0.0
"multiproblem_label_weight": 0.5

"multiproblem_mixing_schedule": "constant"
"multiproblem_reweight_label_loss": false
"multiproblem_schedule_max_examples": 10000000.0
"multiproblem_schedule_threshold": 0.5

"nbr_decoder_problems": 1



"no_data_parallelism": false

"norm_epsilon": 1e-06

"norm_type": "layer"

"num_decoder_layers": 0

"num_encoder_layers": 0

"num_heads": 8

"num_hidden_layers": 6

"optimizer": "Adam"

"optimizer_adafactor_betal": 0.0
"optimizer_adafactor_beta2": 0.999
"optimizer_adafactor_clipping_threshold": 1.0
"optimizer_adafactor_decay_type": "pow"
"optimizer_adafactor_factored": true
"optimizer_adafactor_memory_exponent": 0.8
"optimizer_adafactor_multiply_by parameter_scale": true
"optimizer_adam_betal": 0.9
"optimizer_adam_beta2": 0.997
"optimizer_adam_epsilon": 1e-09
"optimizer_momentum_momentum": 0.9
"optimizer_momentum_nesterov": false
"optimizer_multistep_accumulate_steps": null
"parameter_attention_key_channels": 0
"parameter_attention_value_channels": 0

"pos": "timing"

"prepend_mode": "none"

"pretrained_model_dir": ""
"proximity_bias": false
"relu_dropout": 0.1
"relu_dropout_broadcast_dims": ""
"sampling_method": "argmax"
"sampling_temp": 1.0
"schedule": "continuous_train_and_eval"
"scheduled_sampling_gold_mixin_prob": 0.5
"scheduled_sampling_prob": 0.0
"scheduled_sampling_warmup_steps": 50000
"self_attention_type": "dot_product"
"shared_embedding": false
"shared_embedding_and_softmax_weights": true
"split_to_length": 0

"summarize_grads": false

"summarize_vars": false

"symbol_dropout": 0.0
"symbol_modality_num_shards": 16
"symbol_modality_skip_top": false



"target_modality": "default"
"train_steps": 2000000
"use_fixed_batch_size": false
"use_pad_remover": true
"use_target_space_embedding": true
"video_num_input_frames": 1
"video_num_target_frames": 1
"vocab_divisor": 1
"warm_start_from": null
"weight_decay": 0.0
"weight_dtype": "float32"
"weight_noise": 0.0

Section S2 Preparation of Baeyer-Villiger reaction

The Baeyer-Villiger reaction dataset we filtered out from the Reaxys database is
splatted into three parts: training, validation and test dataset. We make further
analysis of the Baeyer-Villiger reaction dataset' classification to confirm the
effectiveness of the transformer-baseline, transformer-transfer learning and
transformer-transfer learning with onefold SMILES augmentation models. According
to the classification of functional groups containing in the reactants of the Baeyer-
Villiger reaction, the reactions can be divided into two types: the one is reaction with
aldehyde compound as reactant and another one is reactions with ketone compounds
as reactant. Table S1 shows the detailed distributions of reactions in the three dataset
we used to pretrain, valid and test the performance of the transformer-baseline,
transformer-transfer learning and transformer-transfer learning with onefold SMILES
augmentation models. In the limited dataset composed of 2254 Baeyer-Villiger
reaction, there are 392 reactions of aldehyde compound as reactants and 1862
reactions are ketone compound as reactants. The number of reactions in which the
aldehyde compounds are referred to as reactants accounts for 77.0% of the total
training dataset, and this kind of reactions correspond correspondingly accounts for
11.5% in the validation and test dataset, respectively. As for the Baeyer-Villiger
reaction with the ketone compounds as reactants, they account for 80.6% in the
training dataset and 19.4% of reactions of ketone reactants are equally divided into
Validation and test dataset. In other words, the distributions of reactions with splitting
into three datasets is in accord with the scaffold splitting condition.

Table S1. The detailed classifications of Baeyer-Villiger reaction by reactants' type on training,
validation and test dataset.

Reactant type
Dataset Total
aldehyde compound ketone compounds
Training dataset 302 1501 1803
Validation dataset 45 181 226




Test dataset 45 180 225
Total 392 1862 2254

Section S3 Analysis of cross-validations experiments

S3.1 Cross-validations of transformer models on Baeyer-Villiger reaction dataset

In order to avoid the contingency of models' performance caused by the data splitting,
such as prediction results depend too much on favourable or adverse data splitting
procedure, we randomly split the Baeyer-Villiger reaction dataset for ten times and do
experiments, respectively. The detailed top-n accuracies of transformer-baseline
(trained and tested on Baeyer-Villiger reaction dataset), transformer-transfer learning
(pretrained and trained on general chemical reaction and Baeyer-Villiger reaction
datasets respectively, and tested on Baeyer-Villiger reaction dataset), transformer-
transfer learning with different levels SMILES augmentation models are described in
Table S2, Table S3, Table S4, Table S5 and Table S6. Furthermore, we list the average
top-n accuracies of these models in Table S7. All of the average top-1 accuracies of
transformer-baseline, transformer-transfer learning, transformer-transfer learning
with data augmentation models demonstrate that these models could be applied into
reaction predictions. In addition, the transformer-transfer learning model achieves
around 25% improvement and transformer-transfer learning with data augmentations
further improves 3.8% in finishing this task. To some extent, with the introduction of
pretraining knowledge obtained from transfer learning and SMILES augmentation
strategy, the transformer-baseline model expresses a better performance on
addressing the limitation of small data in chemistry field. It is clear that transfer
learning and data augmentation play a critical role in promoting the transformer
model's ability of predicting reaction, and the transformer model does not achieve
good results by pretrained only on big data (general chemical reaction dataset) rather
than trained on specific Baeyer-Villiger reaction dataset.

Table S2. The top-n accuracies of transformer-baseline models.

Transformer-baseline model

Entry
Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)
1 58.4 66.7 68.4 71.1
2 58.4 67.7 70.8 71.2
3 55.7 66.1 68.3 69.1
4 53.3 62.2 65.8 67.5
5 56.4 64.8 69.4 68.5
6 54.5 63.5 65.3 67.4
7 56.7 67.2 68.2 70.3
8 58.2 67.8 70.1 71.6
9 59.2 66.3 65.7 67.4




10 53.6 62.9 65.2 67.2
average 56.4 65.5 67.7 69.1

Table S3. The top-n accuracies of transformer-transfer learning model.

Transformer-transfer learning model

Entry
Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)
1 81.8 86.2 89.3 90.7
2 81.4 88.9 91.5 94.2
3 81.0 88.4 90.7 93.1
4 81.3 88.9 90.2 92.0
5 84.0 88.0 90.2 92.7
6 82.2 89.1 90.5 92.4
7 81.7 88.5 90.6 93.5
8 82.5 88.7 90.4 92.9
9 80.7 89.0 90.7 93.1
10 81.6 88.3 91.2 92.8
average 81.8 88.4 90.5 92.7

Table S4. The top-n accuracies of transformer-transfer learning model with onefold augmentation.

Transformer-transfer learning with onefold augmentation

Entry
Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)
1 86.7 924 94.2 94.2
2 84.0 91.5 91.6 93.6
3 85.7 91.1 91.6 92.9
4 86.2 91.6 93.7 94.2
5 85.1 90.5 92.8 92.8
6 85.2 90.3 92.1 93.9
7 84.7 89.9 91.7 92.4
8 85.6 91.3 92.5 92.7
9 85.4 91.9 94.1 94.2
10 86.3 92.2 93.7 93.7
average 85.5 91.3 92.8 93.5

Table S5. The top-n accuracies of transformer-transfer learning model with twofold augmentation
model.

Entry Transformer-transfer learning with twofold augmentation




Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)

1 84.0 924 94.2 94.2
2 82.8 90.1 92.6 92.5
3 81.3 89.5 93.5 93.9
4 81.9 89.5 91.6 92.7
5 82.4 90.3 92.4 93.6
6 83.5 91.4 92.5 92.7
7 81.6 90.2 93.1 93.0
8 82.9 91.7 94.0 94.5
9 83.5 91.7 92.7 93.2
10 83.2 92.0 93.5 93.7
average 82.7 90.9 93.0 93.4

Table S6. The top-n accuracies of transformer-transfer learning model with fourfold augmentation

model.

Transformer-transfer learning with fourfold augmentation
Entry Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)

1 82.7 90.2 93.3 94.2

2 82.8 90.9 93.6 94.5

3 81.3 89.8 92.4 93.1

4 82.4 90.3 92.8 93.8

5 81.9 89.4 91.5 92.9

6 82.3 89.9 90.7 92.3

7 82.1 89.7 92.1 94.1

8 815 90.3 93.3 94.7

9 81.7 88.5 92.1 93.2

10 83.0 91.2 92.4 94.0

average 82.2 90.0 924 93.7

Table S7. The average accuracies of top-n on transformer-baseline, transformer-transfer learning,
transformer-transfer learning with three level SMILES augmentations.
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The average accuracies of top-n

Model
Top-1 Top-2 Top-3 Top-5
Transformer-baseline model 56.4 65.5 67.7 89.1
Transformer-transfer learning model 81.8 88.4 90.5 92.9
Transformer-transfer learning model
) . 85.5 91.3 82. 93.5
with data augmentation x1
Transformer-transfer learning model
) . 82.7 90.8 93.0 93.4
with data augmentation x2
Transformer-transfer learning model
82.2 90.0 92.4 93.7

with data augmentation x4

S3.2 Analysis of recurrent neural network baseline model

To make the results more convincing, we perform this experiment on a recurrent
neural network model. The recurrent neural network model is a neural machine
translation (NMT) model to reaction prediction, which has been used by Liu et al. to
perform retrosynthesis reaction prediction.] Duan et al. also used this model in their
work to accomplish the task of reaction prediction.l5! Table S8 list the results of
recurrent neural network baseline model based on the corresponding task with
transformer-transfer learning model integrated with onefold augmentation. For
example, the average top-1 accuracy of recurrent neural network-transfer learning
model with onefold augmentation is 75.4%, and average accuracies of top-2, top-3,
top-5 are 79.9%, 81.6%,86.1%. respectively, which are 6%~9% lower than the
transform-er-transfer learning with onefold augmentation. Furthermore, our previous
work has demonstrated the transformer model is more superiority than the recurrent
neural network baseline model !

Table S8. The top-n accuracies of cross-validation results by recurrent neural network baseline

model.
Recurrent Neural Network Baseline Model®
Entry Top-1 (%) Top-2 (%) Top-3 (%) Top-5 (%)
1 75.1 80.9 83.1 90.7
2 75.7 78.8 80.8 84.0
3 73.8 76.4 79.1 91.5
4 72.4 77.7 78.2 78.6
5 78.6 83.5 85.8 86.7
6 76.1 81.8 83.5 85.3
7 73.3 77.9 79.6 84.0
8 75.5 80.0 81.9 86.7
9 76.7 81.3 82.7 88.4
10 76.4 80.4 81.4 84.9
average 75.4 79.9 81.6 86.1




aThe baseline model refers to that the sequence-to-sequence model with transfer learning and
onefold data augmentation.

Section S4 Analysis of top-2 predictions

The top-n represents that once the rankl to rank n predictions are found, the
prediction results of the model scan will stop. The Baeyer-Villiger reaction is an oxygen
insertion reaction, which has two potential reaction sites for the reaction with ketone
compounds as reactants. Therefore, we concern more about its’ top-2 predictions.

For transformer-transfer learning model, the top-2 accuracy is 86.2%. We make
further analysis based on the correctly top-2 predictions. In the rank1 predictions, the
correctly predictions accounts for 89.7%, and the rest of right products appear in the
rank2. Furthermore, the predictions which the rank 1 predicts correctly and rank2
meets the regioselectivity of Baeyer-Villiger reaction account for 28.3%. On the other
hand, for these correct reactions with rankl fitting the regioselectivity account for
8.2% in the top-2 prediction of transformer-transfer learning model.

For transformer-transfer learning model with onefold augmentation, the top-2
accuracy is 92.4%. The result of rank1 prediction indicate that the correctly predictions
accounts for 93.2%. Moreover, for the predictions that either rankl or rank2 meets
regioselectivity account for 22.4%.
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