Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020 ## Supporting Information for ## Self-Healing Composite Hydrogel with Antibacterial and Reversible Restorability Conductive Properties Mimpin Ginting^a†*, Subur P. Pasaribu^b†, Indra Masmur^a, Jamaran Kaban^a, and Hestina^c ^aDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan-20155, Indonesia. ^bDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda-75123, Indonesia. ^cDepartment of Chemistry, Universitas Sari Mutiara Indonesia, Medan-20123, Indonesia. †Ginting, M. and Pasaribu S. P. contributed equally to this work. *Corresponding Author: Mimpin Ginting, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan-20155, Indonesia. e-mail: mimpin.ginting@yahoo.com **Fig. 1S.** SEM images of hydrogels during self-healing processes (a) cut-off; healed at 37° C for (b) 6 h; and (c) 12 h at magnification of x1000 (scale bar $10\mu m$).