Aerobic Photooxidative Hydroxylation of Boronic acids catalyzed by Anthraquinone-Containing Polymeric Photosensitizer

Yang Chen ${ }^{\mathrm{a}}$, Jianhua $\mathrm{Hu}^{\mathrm{a}, *}$, Aishun Ding ${ }^{\mathrm{b}, *}$

${ }^{\text {a }}$ State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China. E-mail address: hujh@fudan.edu.cn (J. Hu), Fax: +86-21-31242888, Tel: +86-21-55665280
${ }^{\text {b }}$ Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China. Email address: shunzi0522@126.com, Fax: +86-21-31249190, Tel: +86-21-31249190

Supplementary Information

Table S1	S2
Figure S1	S3
Figure S2	S3
Experimental Section	S4
NMR Spectra	S17
References	S33

Table S1. Screening of different LED ${ }^{a}$.

Entry	LED	Time (h)	Yield $(\%)^{\mathrm{b}}$
1	Red	27	$8(90)^{\mathrm{c}}$
2	Yellow	$10(89)^{\mathrm{c}}$	
3	Blue	27	$11(87)^{\mathrm{c}}$
4	White	27	$9(89)^{\mathrm{c}}$

${ }^{\text {a }}$ The reaction were carried out using $\mathbf{1 a}(1 \mathrm{mmol})$, AQ-PHEMA($3 \mathrm{~mol} \%$), $i-\mathrm{Pr}_{2} \mathrm{NEt}$ (2 equiv) in 1,4dioxane (5 mL), irradiated by LED under air atmosphere at rt . (Based on AQ anchored on PHEMA, the mass of $3 \mathrm{~mol} \%$ AQ-PHEMA is 10 mg . ${ }^{\text {b }}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR analysis using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ (1 mmol) as internal standard. ${ }^{\mathrm{c}}$ Recovered yield of $\mathbf{1 a}$ determined by ${ }^{1} \mathrm{H}$ NMR analysis using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ (1 mmol) as internal standard.

Figure S1. Emission spectra of purple LED

Figure S2. CV of AQ-PHEMA coated on GC electrode, $0.05 \mathrm{~mol} / \mathrm{L} \mathrm{KCl}$ electrolyte solutions at the scan rates at $100 \mathrm{mV} / \mathrm{s}$.

Experimental Section

All the substrates and reagents were commercial available from Sann Chemical Technology (Shanghai) Co. Ltd. All the photo reactions were carried out using purple LED (1 m strip $\times 2$, Greethink $5050,12 \mathrm{~V} / \mathrm{m}$) at a distance of $8-10 \mathrm{~cm}$ at rt under air atmosphere unless stated otherwise. IR spectra were recorded on an Avatar 360 FT-IR spectrometer. UV-Vis spectroscopies were recorded on an Evolution 220 UV-Visible spectrophotometer. Cyclic voltammogram (CV) was measured by using an electrochemical analyser (CHI 660E, Chenhua, Shanghai, China). A Pt wire and $\mathrm{Hg} / \mathrm{Hg}_{2} \mathrm{Cl}_{2}$ (SCE) electrode were used as the auxiliary and reference electrodes, respectively. In the $0.05 \mathrm{~mol} / \mathrm{L} \mathrm{KCl}$ as the electrolyte. An initial potential of -0.2 V was applied for 2 s , and subsequently cyclic scans to a final potential of -1.2 V were done for 10 cycles. The CV curves and data reported in the present work were the $10^{\text {th }}$ cycle. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ NMR spectra of samples in CDCl_{3} or d_{6}-DMSO at 298 K were recorded on an AVANCE III 400 spectrometer. The apparent molecular weight ($M W$) and molecular weight distribution ($M w / M n$) of polymers were analyzed by size exclusion chromatography (SEC) measurement, which was performed in LiBr-added N, N dimethylformamide $(\mathrm{DMF})([\mathrm{LiBr}]=14 \mathrm{mM})$ at $55^{\circ} \mathrm{C}$ with an elution rate of $1.0 \mathrm{~mL} / \mathrm{min}$ on an Agilent 1260 equipped with a G1310B pump, a G1362A refractive index detector, and a G1314F variable wavelength detector. Two $5 \mu \mathrm{~m} \mathrm{LP} \mathrm{gel} \mathrm{columns} \mathrm{(} 500 \AA$, molecular range 500-1.2 $\times 10^{5} \mathrm{Da}$ and 200-1.0 $\times 10^{6} \mathrm{Da}$) were calibrated using poly (methyl methacrylate) (PMMA) standards.

Synthesis and characterization of AQ-PHEMA

The AQ-PHEMA was prepared by reaction of PHEMA with AQ-2-COCl (Scheme S1). At first, AQ-2-COCl was synthesized as the following procedure. In a dry 250 mL of Schlenk flask, under argon atmosphere, $\mathrm{AQ}-2-\mathrm{COOH}(2.704 \mathrm{~g}, 10.7 \mathrm{mmol})$ was refluxed with $\mathrm{SOCl}_{2}(2.5 \mathrm{~mL})$ in anhydrous dichloroethane (20 mL). After 4 hours, the mixture was concentrated under vacuum and the residue was stripped twice with anhydrous dichloroethane ($10 \mathrm{~mL} \times 2$). Subsequently, the residue was dissolved in anhydrous DMF (20 mL) and transferred into another dry 100 mL of Schlenk flask containing precursor PHEMA (2.792 g) which was previously dried by azeotropic distillation with toluene $(100 \mathrm{~mL})$. After that, anhydrous DMF $(20 \mathrm{~mL})$ was added. Anhydrous $\mathrm{Et}_{3} \mathrm{~N}(16 \mathrm{~mL})$ as acidbinding agent was syringed into the flask. The mixture was stirred for 62 hours at rt. The mixture was precipitated with water $(500 \mathrm{~mL})$ twice and methanol $(500 \mathrm{~mL})$ once. The obtained AQ-PHEMA was further dried under vacuum at $60^{\circ} \mathrm{C}$ to a constant weight. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, d_{6}\right.$-DMSO, δ, ppm,

TMS): 1.00-0.65 (m, $-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)-$), 2.15-1.47 (m, $-\mathrm{CH}_{2} \mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)$) , 4.23-3.41 (m, AQCOOCH $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 8.75-7.93 (m, Ar-H). $M_{n, \mathrm{GPC}}=43,000, M_{w} / M_{n}=1.53$.

Scheme S1. The synthetic procedure for AQ-PHEMA.

The ${ }^{1} \mathrm{H}$ NMR spectra for AQ-2-COOH, PHEMA and AQ-PHEMA were shown in Figure S3. According to our previous work, ${ }^{1}$ the structure of AQ could be confirmed by the characteristic resonance signal on phenyl at $8.73-7.92 \mathrm{ppm}$. The characteristic resonance signals for methylene protons ($\mathrm{HOCH}_{2} \mathrm{CH}_{2^{-}}$) of PHEMA could be clearly discriminated at 4.05-3.42 ppm, and signal for methyl protons $\left(-\mathrm{CH}_{2} \mathrm{CBr}\left(\mathrm{CH}_{3}\right)\right.$-) could be observed at $1.00-0.65 \mathrm{ppm}$. The characteristic resonance signals for the alkyl and phenyl groups were substantially identical to that of PHEMA and AQ-2COOH . We also performed IR spectrum characterization of AQ-PHEMA and found that hydroxyl groups were not all modified (Figure S4).

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra for AQ-2-COOH, PHEMA and AQ-PHEMA in d_{6}-DMSO.

Figure S4. IR spectrum of AQ-PHEMA.

The apparent molecular weight of PHEMA was calibrated as $27,800 \mathrm{~g} / \mathrm{mol}$ by SEC instrument using PMMA as calibration. Obviously, the GPC curve of AQ-PHEMA is significantly shift to the higher molecular weight region $(43,000 \mathrm{~g} / \mathrm{mol})$ (Figure S5). The above results indicated that the AQ functional group was successfully attached to PHEMA.

Figure S5. The GPC traces of PHEMA and AQ-PHEMA.

Calculate the ratio of AQ in AQ-PHEMA by UV-Vis spectrophotometer

Next, AQ-2-COOH, PHEMA and AQ-PHEMA DMF solutions were measured by UV-Vis spectrophotometer to determine the ratio of AQ in AQ-PHEMA. As shown in Figure S6, at the range of 250-700 nm wavelengths, PHEMA had no absorption, AQ-PHEMA had two absorption peaks at 268 nm and 330 nm , which was identical with AQ-2-COOH. However, the absorption at 268 nm was significantly interfered by solvent. Therefore, 330 nm was selected as the maximum absorption wavelength. Five different concentrations of AQ-2-COOH DMF standard solutions were prepared to obtain a calibration curve (Figure S7). Finally, a DMF solution of AQ-PHEMA ($0.044 \mathrm{mg} / \mathrm{mL}$) was measured at 330 nm with the absorbance as 0.772 . Since PHEMA had no absorption at 330 nm , the absorption signal in the AQ-PHEMA solution was solely from its AQ functional group. According to the linear regression equation from the calibration curve of $\mathrm{AQ}-2-\mathrm{COOH}$, the concentration of AQ in AQ-PHEMA DMF solution $(0.044 \mathrm{mg} / \mathrm{mL})$ was calculated as $1.302 \times 10^{-4} \mathrm{mmol} / \mathrm{mL}$. Thus, the ratio of AQ in AQ-PHEMA was calculated as $2.959 \mathrm{mmol} / \mathrm{g}$.

Figure S6. UV-Vis absorption spectra of AQ-2-COOH, PHEMA and AQ-PHEMA in DMF.

Figure S7. Calibration curve of AQ-2-COOH measured by UV-Vis spectrophotometry at 330 nm .

Typical Procedure for the reaction under Condition A. (2a-2aa and 4a-4e)

4-Methoxyphenol (2a) ${ }^{2}$

1a ($152 \mathrm{mg}, 1 \mathrm{mmol}$), AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol}$), and $1,4-$ dioxane (5 mL) were added to a dry 25 mL Schlenk bottle. The mixture was irradiated by purple LED at rt under air atmosphere. The photoreaction was completed after 27 h as monitored by TLC (eluent: petroleum ether/ethyl acetate $=2 / 1$). The solvent was removed and the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1 \rightarrow 5 / 1$) to afforded 2a as a solid ($120 \mathrm{mg}, 97 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82-6.73(\mathrm{~m}, 4 \mathrm{H}), 4.94$ (brs, 1 H), 3.76 ($\mathrm{s}, 3 \mathrm{H}$).

The following compounds were prepared according to Typical Procedure

3-Methoxyphenol (2b) ${ }^{2}$

The reaction of $\mathbf{1 b}(152 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr} \mathrm{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded 2b as a liquid ($117 \mathrm{mg}, 94 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.39(\mathrm{~m}, 3 \mathrm{H}), 5.14$ (brs, 1H), 3.72 (s, 3H).

2-Methoxyphenol (2c) ${ }^{2}$

The reaction of $\mathbf{1 c}(152 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{2 c}$ as a liquid ($115 \mathrm{mg}, 93 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.95-6.79$ (m, 4H), 5.67 (brs, 1H), 3.86 (s, 3H).

4-Aminophenol (2d) ${ }^{3}$

The reaction of $\mathbf{1 d}(173 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol}$), and 1,4-dioxane (5 mL) afforded 2d as a solid ($98 \mathrm{mg}, 90 \%$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 8.35$ (brs, $1 \mathrm{H}), 6.48$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.42$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.39 (brs, 2H).

4-Methylphenol (2e) ${ }^{2}$

The reaction of $\mathbf{1 e}(136 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded 2e as a solid ($103 \mathrm{mg}, 95 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.01$ (d, $J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.87$ (brs, 1H), $2.26(\mathrm{~s}, 3 \mathrm{H})$.

3-Methylphenol (2f) ${ }^{2}$

The reaction of $\mathbf{1 f}(136 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}{ }_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{2 f}$ as a liquid ($100 \mathrm{mg}, 94 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{t}, J=$
$7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.61(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.

2-Methylphenol (2g) ${ }^{2}$

The reaction of $\mathbf{1 g}(136 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), i - $\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{2 g}$ as a solid ($100 \mathrm{mg}, 94 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16$ 7.03 (m, 2 H$), 6.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (brs, 1H), $2.25(\mathrm{~s}, 3 \mathrm{H})$.

4-Ethylphenol (2h) ${ }^{2}$

The reaction of $\mathbf{1 h}(150 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4 -dioxane (5 mL) afforded $\mathbf{2 h}$ as a solid ($115 \mathrm{mg}, 94 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{brs}, 1 \mathrm{H}), 2.57(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H})$.

4-Phenylphenol (2i) ${ }^{2}$

The reaction of $\mathbf{1 i}(198 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr} \mathrm{Pr}_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{2 i}$ as a solid ($181 \mathrm{mg}, 94 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.75$ (brs, 1H).

Phenol (2j) ${ }^{2}$

The reaction of $\mathbf{1 j}$ ($122 \mathrm{mg}, 1 \mathrm{mmol}$), AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr} \mathrm{Pr}_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol}$), and 1,4-dioxane (5 mL) afforded $\mathbf{2 j}$ as a solid ($88 \mathrm{mg}, 93 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{t}, J=7.4$
$\mathrm{Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{brs}, 1 \mathrm{H})$.

4-Fluorophenol (2k) ${ }^{2}$

The reaction of $\mathbf{1 k}(140 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{2 k}$ as a solid ($106 \mathrm{mg}, 95 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 6.92(\mathrm{t}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 2 \mathrm{H}), 4.97($ brs, 1 H$)$.

4-Chlorophenol (21) ${ }^{2}$

The reaction of $\mathbf{1 1}(156 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr} \mathrm{Pr}_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{2 I}$ as a solid ($123 \mathrm{mg}, 96 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.75 (brs, 1H).

4-Bromophenol (2m) ${ }^{2}$

The reaction of $\mathbf{1 m}$ ($201 \mathrm{mg}, 1 \mathrm{mmol}$), AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol}$), and 1,4-dioxane (5 mL) afforded $\mathbf{2 m}$ as a solid ($163 \mathrm{mg}, 94 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.50$ (brs, 1 H).

4-Iodophenol (2n) ${ }^{2}$

The reaction of $\mathbf{1 n}(248 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4 -dioxane (5 mL) afforded $\mathbf{2 n}$ as a solid ($211 \mathrm{mg}, 96 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.07$ (brs, 1H).

4-Nitrophenol (20) ${ }^{2}$

The reaction of $\mathbf{1 0}(167 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4 -dioxane (5 mL) afforded $\mathbf{2 o}$ as a solid ($129 \mathrm{mg}, 93 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.74$ (brs, 1 H).

4-(Trifluoromethyl)phenol (2p) ${ }^{2}$

The reaction of $\mathbf{1 p}(190 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol}$), and 1,4 -dioxane $(5 \mathrm{~mL})$ afforded $\mathbf{2 p}$ as a solid ($157 \mathrm{mg}, 97 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{brs}, 1 \mathrm{H})$.

3-(Trifluoromethyl)phenol (2q) ${ }^{2}$

The reaction of $\mathbf{1 q}(190 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr} \mathrm{P}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4 -dioxane (5 mL) afforded $\mathbf{2 q}$ as a liquid ($149 \mathrm{mg}, 92 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{brs}, 1 \mathrm{H})$.

2-(Trifluoromethyl)phenol (2r) ${ }^{2}$

The reaction of $\mathbf{1 r}(190 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr} \mathrm{Pr}_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded 2 r as a liquid ($151 \mathrm{mg}, 93 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{brs}, 1 \mathrm{H})$.

4-Cyanophenol (2s) ${ }^{2}$

The reaction of $1 \mathrm{~s}(147 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded 2s as a solid (113 mg, 95%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.89$ (brs, 1H).

3-Cyanophenol (2t) ${ }^{4}$

The reaction of $\mathbf{1 t}(147 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr} \mathrm{Pr}_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{2 t}$ as a solid ($110 \mathrm{mg}, 92 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.03($ brs, 1 H$)$.

2-Cyanophenol (2u) ${ }^{4}$

The reaction of $\mathbf{1 u}(147 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{2 u}$ as a solid ($111 \mathrm{mg}, 93 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-$ 7.43 (m, 2H), $7.06-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.80$ (brs, 1H).

4-Formylphenol (2v) ${ }^{2}$

The reaction of $\mathbf{1 v}(150 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{2 v}$ as a solid ($114 \mathrm{mg}, 93 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86$ (s, $1 \mathrm{H}), 7.83$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.62 (brs, 1 H).

4-Acetylphenol (2w) ${ }^{2}$

The reaction of $\mathbf{1 w}(164 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{2 w}$ as a solid ($132 \mathrm{mg}, 97 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{brs}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$.

4-Methoxycarbonylphenol (2x) ${ }^{2}$

The reaction of $\mathbf{1 x}(180 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4 -dioxane $(5 \mathrm{~mL})$ afforded $\mathbf{2 x}$ as a solid ($149 \mathrm{mg}, 98 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.44$ (brs, 1H), 3.89 (s, 3H).

4-Carboxyphenol (2y) ${ }^{5}$

The reaction of $\mathbf{1 y}(166 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol}$), and 1,4-dioxane (5 mL) afforded $\mathbf{2 y}$ as a solid ($127 \mathrm{mg}, 92 \%$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 12.41$ (brs, 1H), 10.21 (brs, 1H), 7.80 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.82 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$).

Naphthalen-1-ol (2z) ${ }^{2}$

The reaction of $\mathbf{1 z}(172 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{2 z}$ as a solid ($133 \mathrm{mg}, 92 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22-8.13$ (m, 1H), $7.84-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.20 (brs, 1H).

Naphthalen-2-ol (2aa) ${ }^{2}$

The reaction of $\mathbf{1 a a}(172 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded 2aa as a solid ($138 \mathrm{mg}, 96 \%$); ${ }^{1} \mathrm{H}$ NMR (400 MHz ,) $\delta 7.75(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}), 7.17-7.07(\mathrm{~m}), 5.13(\mathrm{brs}, 1 \mathrm{H})$.

Cyclohexanol (4a) ${ }^{2}$

The reaction of 3a(128 mg, 1 mmol), AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol}$), and 1,4-dioxane (5 mL) afforded $\mathbf{4 a}$ as a liquid ($80 \mathrm{mg}, 80 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.66-$ $3.54(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.09(\mathrm{~m}, 5 \mathrm{H})$.

Hexanal (4b) ${ }^{6}$

The reaction of 3b ($128 \mathrm{mg}, 1 \mathrm{mmol}$), AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol}$), and 1,4 -dioxane (5 mL) afforded $\mathbf{4 b}$ as a liquid ($83 \mathrm{mg}, 83 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77$ (s, $1 \mathrm{H}), 2.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.

3-Phenylpropanal (4c) ${ }^{2}$

The reaction of $\mathbf{3 c}(162 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{4 c}$ as a liquid ($109 \mathrm{mg}, 81 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H})$, $7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.

Phenol (2j) ${ }^{2}$

The reaction of 3d (204 mg, 1 mmol), AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol}$), and 1,4-dioxane (5 mL) afforded $\mathbf{2} \mathbf{j}$ as a solid ($86 \mathrm{mg}, 91 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{brs}, 1 \mathrm{H})$.

Benzyl alcohol (4e) ${ }^{2}$

The reaction of $\mathbf{3 e}(218 \mathrm{mg}, 1 \mathrm{mmol})$, AQ-PHEMA ($10 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \operatorname{NEt}(330 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and 1,4-dioxane (5 mL) afforded $\mathbf{4 e}$ as a liquid ($103 \mathrm{mg}, 95 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.14$ $(\mathrm{m}, 5 \mathrm{H}), 4.43(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Gram scale reaction of $\mathbf{2 x}$ under Condition A.
purple LED

1x ($1.824 \mathrm{~g}, 10.1 \mathrm{mmol}$), AQ-PHEMA ($101 \mathrm{mg}, 3 \mathrm{~mol} \%$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(3.3 \mathrm{~mL}, 20.2 \mathrm{mmol}$), and $1,4-$ dioxane $(50 \mathrm{~mL})$ were added to a dry 100 mL Schlenk bottle. The mixture was irradiated by purple LED at rt under air atmosphere. The photoreaction was completed after 30 h as monitored by TLC (eluent: petroleum ether/ethyl acetate $=2 / 1$). The solvent was removed and the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1 \rightarrow 5 / 1$) to afforded 2 x as a solid $(1.475 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.48$ (brs, 1H), 3.90 (s, 3H).

1284

2a

1291

管

8
0
1

1292

2c

2d

$2 e$
\qquad
$\begin{array}{llllllllllllllllllllllllllllllllll}13.0 & 12.5 & 12.0 & 11.5 & 11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0.5\end{array}$
1294

2f

2g

$$
\int \pi
$$

| 13.0 | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 |
| :--- |

1296

2h

2i

1298

$$
\begin{aligned}
& \stackrel{\text { a }}{\substack{0 \\
1}}
\end{aligned}
$$

2j

1301

Tưjijis
荡
$\stackrel{\text { \# }}{\stackrel{\text { B }}{\infty}}$

2k

1302

$\stackrel{\text { B }}{\text { i }}$
$\stackrel{8}{8}$
$\stackrel{8}{8}$

21

2m

1304

2n

1305

Con
2p

$2 q$

1307

$2 r$

$$
\text { /I } / 5
$$

1311

2s

1344

2t
J1)

| 13.0 | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 |
| :--- |

2w

$$
\int \quad \int
$$

1310

2x

$2 y$

1314

乡ivivivisu
훌
$\stackrel{\text { 需 }}{1}$
8

$2 z$
fs \int J
ऽ
s

2aa
$\iiint \iint$

4a

1320

4c

2j

1316

「ijiju

8
0
1

$4 e$

References

1. A. Ding, Y. Chen, G. Wang, Y. Zhang, J. Hu and H. Guo, Polymer, 2019, 174, 101-108.
2. A. Ding, Y. Zhang, Y. Chen, R. Rios, J. Hu and H. Guo, Tetrahedron Lett., 2019, 60, 660-663.
3. H. Yang, S. J. Bradley, A. Chan, G. I. Waterhouse, T. Nann, P. E. Kruger and S. G. Telfer, J. Am. Chem. Soc., 2016, 138, 11872-11881.
4. I. Kumar, R. Sharma, R. Kumar, R. Kumar and U. Sharma, Adv. Synth. Catal., 2018, 360, 2013-2019.
5. Y. Mao, Y. Liu, Y. Hu, L. Wang, S. Zhang and W. Wang, ACS Catal., 2018, 8, 3016-3020.
6. S. Kim, Y. Kim, H. Jin, M. H. Park, Y. Kim, K. M. Lee and M. Kim, Adv. Synth. Catal., 2019, 361, 1259-1264.
