Electronic Supplementary Information (ESI)

Bismuth-iron-based Precursor: Preparation, Phase composition, and its Thermal Treatment in Two Ways

Yunpeng Liu,^{ab} Hao Wang,^{ab} Lixiong Qian,^{ab} Xiaoyi Zhao,^{ab} Lei Yao,^a Jiayi Wang,^a Xueqing Xing,^a Guang Mo^a, Zhongjun Chen,^a Zhonghua Wu^{ab*}

> ^aInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
> ^bUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China

*: Correspondence to: Zhonghua Wu, E-mail: <u>wuzh@ihep.ac.cn</u>

Figure S1. X-ray absorption fine structure (XAFS) spectra of the as-prepared samples BFOH, BFO-KOH, BFO-H₂O, BNO, FNO-KOH and FNO. (a) Bi L₃-edge; (b) Fe K-edge.

Figure S2. XRD patterns of the purchased standard sample Bi_2O_3 -std (β - Bi_2O_3) and as-prepared BNO-KOH (α - Bi_2O_3). Two reference XRD patterns of Bi_2O_3 are also given.

Figure S3. Raman spectra of the purchased standard sample Bi_2O_3 -std (β - Bi_2O_3) and the asprepared BNO-KOH (α - Bi_2O_3).

Figure S4. Photographs of the purchased sample Bi_2O_3 -std (β - Bi_2O_3) and as-prepared BNO-KOHpowders (α - Bi_2O_3).

Figure S5. Photographs of the BNO $(Bi(NO_3)_3 \cdot 5H_2O)$ and as-prepared BNO-H₂O powders $(Bi_6O_5(NO_3)_5(OH)_3 \cdot 3H_2O)$ and $Bi_6O_6(NO_3)_4(OH)_2 \cdot 2H_2O$ mixture).

Figure S7. Photographs of the as-prepared BNO-KOH (α -Bi₂O₃), FNO-KOH (Fe(OH)₃), BFOH, and BNO-H₂O(Bi₆O₅(NO₃)₅(OH)₃·3H₂O and Bi₆O₆(NO₃)₄(OH)₂·2H₂O mixture) powders.

Figure S8. XRD pattern comparison between the as-prepared FNO-KOH (Fe(OH)₃) sample and the references (PDF code 46-1436, PDFcode 13-0089, and PDF code 22-0353).

Figure S9. Mapping of Bi, Fe, and O element distributions in samples BFOH-400°C (a) and BFOH-500°C (b).

Figure S10. XRD patterns of the hydrothermal synthesized samples BFO-24h, BFO-48h, and BFO-72h.

Figure S11. XRD patterns of the hydrothermal synthesized samples BFO-1M, BFO-2M, BFO-3M, BFO-4M, and BFO-5M.

Figure S12. XRD patterns of the hydrothermal synthesized samples BFO-PVP, BFO-EDTA, and BFO-CTAB.

Figure S13. Fe K-edge X-ray absorption spectra of the as-prepared samples BFO-400°C and BFO.

Table S1. Bi L₃-edge EXAFS fitting parameters of sample BFO-400°C and BFO.

Sample	Bond	R (Å)	Ν	σ ² (10 ⁻³ Å ²)	$\Delta \mathbf{E}$ (eV)
BiFeO3 ^{s1}	Bi-O	2.314	3		
	Bi-O	2.523	3		
	Bi-O	3.210	3		
	Bi-Fe	3.313	3		
	Bi-Fe	3.581	3		
BFO-400°C	Bi-O	2.16	3.1	6	-9.3
	Bi-O	2.34	0.4	6	-9.3
	Bi-O	3.00	2.9	6	-9.3
	Bi-Fe	3.38	2.8	8	6.7
	Bi-Fe	3.60	3.2	8	6.7
BFO	Bi-O	2.18	3.2	5	-8.3
	Bi-O	2.33	0.4	5	-8.3
	Bi-O	3.00	2.9	5	-8.3
	Bi-Fe	3.37	3.1	7	4.4
	Bi-Fe	3.59	2.9	7	4.4

References:

s1. J. M.Moreau, C.Michel, R.Gerson, and W. J.James, J. Phys. Chem. Solids 1971, 32, 1315-1320.