Supporting Information

Unprecedent Formation of Methylsilylcarbonates from Ir-Catalyzed Reduction of CO₂ with Hydrosilanes

Jefferson Guzmán, Pilar García-Orduña, Fernando J. Lahoz and Francisco J. Fernández-Alvarez*

Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza – Spain. e-mail: paco@unizar.es.

Table of Contents

1.	General information and experimental details	2
2.	NMR Characterization of complex 3	3
3.	NMR characterization of the methyl-silyl-carbonates species	6
4.	Control Experiment	14
5.	Crystal Structure Determination of Complex 3	15

1. General information and experimental details

All manipulations were carried out under an argon atmosphere by Schlenk-type techniques or in a Glovebox MBraun Unilab. Organic solvents were dried by standard procedures and distilled under argon prior to use or obtained oxygen- and water-free from a solvent purification system (Innovative Technologies). ¹H, ¹³C, ²⁹Si and ¹⁹F NMR spectra were obtained on a Bruker AV-300, AV-400 or AV-500 spectrometer. Chemical shifts (δ), reported in ppm, are referenced to the residual solvent peaks and coupling constants (*J*) are reported in Hz.

Synthesis of $[Ir(NSiMe)_2(CF_3SO_3)]_2$ (3). Toluene (10 mL) was added to a light-protected Schlenk containing $[Ir(NSi^{Me})_2(CI)]_2$ (300 mg, 0.268 mmol) and silver triflate (151 mg, 0.590 mmol). The mixture was stirred at room temperature for 5 hours and then filtered through Celite. Solvent was removed under reduced pressure and the solid was washed with pentane (3 x 8 mL) to afford a white solid. Yield: 320 mg (89%). ¹H NMR (300 MHz, C₆D₆, 298K): δ 8.73 (d, *J*_{H-H} = 6.2 Hz, 2H, py), 6.32 (s, 2H, py), 6.02 (d, *J*_{H-H} = 6.3 Hz, 2H, py), 1.51 (s, 6H, Me-py), 0.72 (s, 6H, Si-Me), 0.41 (s, 6H, Si-Me). ¹³C NMR (75 MHz, C₆D₆, 298K): δ 168.7 (s, py), 152.6 (s, py), 148.7(s, py), 118.4 (s, py), 111.9 (s, py), 20.6 (s, CH₃-py), 3.8 (s, CH₃-Si), 2.4 (s, CH₃-Si). ²⁹Si{¹H} NMR plus ¹H-²⁹Si HMBC (60 MHz, C₆D₆, 298 K): δ 38.2 (Si-Ir). ¹⁹F NMR (282 MHz, C₆D₆, 298K): δ -76.97 (CF₃SO₃). High resolution mass spectrometry (ESI⁺): calc. *m/z* = 525.1006; found *m/z* = 525.1004 (M⁺-CF₃SO₃).

Catalytic Reactions with 1 mol% of 3. A Young cap NMR tube was charged with 1 mol% of **3** (2.83 mg, 0.0042 mmol), 0.42 mmol of the corresponding silane (114 μ L, HSiMe(OSiMe₃)₂; 64.4 μ L, HSiMe₂Ph; 83.7 μ L, HSiMePh₂) and 0.5 mL of C₆D₆. Argon gas was evacuated by three freeze-pump-thaw cycles. Then the tube was pressurized with CO₂ (3 bar) or ¹³CO₂ (2.7 bar) and heated at 323 K.

Selected data for ¹³CH₃O¹³CO₂SiMe(OSiMe₃)₂. ¹H NMR plus HSQC ¹H–¹³C (300 MHz, C₆D₆, 298 K): δ 3.33 (dd, $J_{\text{H-C}}$ = 146.9, 4.1 Hz, 3H, CH₃OCO₂). ¹³C{¹H} plus HSQC and HMBC ¹H–¹³C (75 MHz, C₆D₆, 298 K): δ 153.0 (d, ² $J_{\text{C-C}}$ = 1.7 Hz, CO₃), 54.1 (d, ² $J_{\text{C-C}}$ = 1.7 Hz, CH₃O). ²⁹Si{¹H} DEPT-45 NMR plus ¹H–²⁹Si HMBC (60 MHz, C₆D₆, 298 K): -55.8 (br, CH₃OCO₂SiMe(O<u>Si</u>Me₃)₂).

Selected data for ¹³CH₃O¹³CO₂SiMe₂Ph. ¹H NMR plus HSQC ¹H–¹³C (300 MHz, C₆D₆, 298 K): δ 3.30 (dd, ¹*J*_{H-C} = 147.1 Hz, ³*J*_{H-C} = 4.1 Hz, 3H, CH₃OCO₂). ¹³C{¹H} plus HSQC and HMBC ¹H–¹³C (75 MHz, C₆D₆, 298 K): δ 154.1 (d, ²*J*_{C-C} = 1.7 Hz, *C*O₃), 54.2 (d, ²*J*_{C-C} = 1.7 Hz, CH₃O). ²⁹Si{¹H} DEPT-45 NMR plus ¹H–²⁹Si HMBC (60 MHz, C₆D₆, 298 K): 14.3 (d, ²*J*_{Si-C} = 0.9 Hz, CH₃OCO₂*Si*Me₂Ph).

Selected data for ¹³CH₃O¹³CO₂SiMePh₂. ¹H NMR plus HSQC ¹H–¹³C (300 MHz, C₆D₆, 298 K): δ 3.23 (dd, ¹*J*_{H-C} = 147.1 Hz, ³*J*_{H-C} = 4.1 Hz, 3H, CH₃OCO₂). ¹³C{¹H} plus HSQC and HMBC ¹H–¹³C (75 MHz, C₆D₆, 298 K): δ 153.9 (d, ²*J*_{C-C} = 1.7 Hz, CO₃), 54.3 (d, ²*J*_{C-C} = 1.7 Hz, CH₃O). ²⁹Si{¹H} DEPT-45 NMR plus ¹H–²⁹Si HMBC (60 MHz, C₆D₆, 298 K): 2.07 (d, ²*J*_{Si-C} = 1.1 Hz, CH₃OCO₂S*i*MePh₂).

2. NMR Characterization of complex 3

Figure S2. ¹³C APT NMR spectrum of complex 3

Figure S6. HR-MS spectrum of complex 3

3. NMR characterization of the methyl-silyl-carbonates species

Figure S7. ¹H NMR from the 3-catalyzed reaction of ¹³CO₂ with HMTS after 12 hours

Figure S8. ¹H NMR detail showing the ¹³CH₃O- products. $[A = {}^{13}CH_3OSiMe(OSiMe_3)_2; B = {}^{13}CH_3O{}^{13}CO_2SiMe(OSiMe_3)_2]$

Figure S9. ¹³C{¹H} NMR from the **3**-catalyzed reaction of ${}^{13}CO_2$ with HMTS after 12 hours (with details showing the ${}^{13}C{}^{-13}C$ coupling in the ${}^{13}CH_3O{}^{13}CO_2SiMe(OSiMe_3)_2$ compound)

Figure S10. ¹H–¹³C HSQC spectrum from the 3-catalyzed reaction of ¹³CO₂ with HMTS

Figure S11. ¹H–¹³C HMBC spectrum from the 3-catalyzed reaction of ¹³CO₂ with HMTS

Figure S12. Detail from ¹H–¹³C HMBC spectrum showing multiple bond correlation of the CH₃O protons with the carbonate

Figure S15. ¹H NMR detail from the **3**-catalyzed reaction of ¹³CO₂ with HSiMe₂Ph (**A**, ¹³CH₃OSiMe₂Ph; **B**, ¹³CH₃O¹³CO₂SiMe₂Ph)

Figure S16. ¹³C{¹H} NMR from the **3**-catalyzed reaction of ¹³CO₂ with HSiMe₂Ph (with details showing the ¹³C-¹³C coupling in the ¹³CH₃O¹³CO₂SiMe₂Ph compound)

Figure S17. $^{1}H-^{13}C$ HMBC spectrum from the 3-catalyzed reaction of $^{13}CO_2$ with HSiMe₂Ph

Figure S18. ^{29}Si DEPT from the 3-catalyzed reaction of $^{13}\text{CO}_2$ with HSiMe_2Ph

Figure S19. ¹H NMR from the 3-catalyzed reaction of ¹²CO₂ with HSiMePh₂

Figure S20. ¹H NMR detail from the **3**-catalyzed reaction of ¹³CO₂ with HSiMePh₂ (**A**, ¹³CH₃O¹³CO₂SiMePh₂; **B**, ¹³CH₃OSiMePh₂)

Figure S21. ¹³C{¹H} NMR from the **3**-catalyzed reaction of ¹³CO₂ with HSiMePh₂ (with details showing the ¹³C-¹³C coupling in the ¹³CH₃O¹³CO₂SiMePh₂ compound)

Figure S22. ¹H–¹³C HMBC spectrum from the 3-catalyzed reaction of ¹³CO₂ with HSiMePh₂

Figure S23. ²⁹Si DEPT from the 3-catalyzed reaction of ${}^{13}CO_2$ with HSiMePh₂

4. Control Experiment

Figure S24. ¹H NMR from the mixture of CO_2 and $HSiMe(OSiMe_3)_2$ in absence of 3 in C_6D_6 after 24h at 323K

5. Crystal Structure Determination of Complex 3

Single crystal X-ray diffraction data were collected at 100(2) K with graphite-monochromated Mo K α radiation (λ =0.71072 Å) using narrow frame rotation ($\Delta\omega$ =0.3°) on a Bruker Smart APEX diffractometer. Measured intensities were integrated and corrected for absorption effects with SAINT+^{S1} and SABABS^{S2} programs, included in APEX2 package. The structure was solved with direct methods with SHELXS-2013^{S3} and refined by full-matrix least-squares refinement on F^2 with SHELXL-2018^{S4} program, included in WingX package.^{S5} The disordered solvent region has been analyzed with SQUEEZE program.^{S6}

CCDC 1972218 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/structures</u>.

Crystal data compound **3**. $C_{34}H_{48}F_6Ir_2N_4O_{10}S_2Si_4 \cdot 0.5(H_2O)$; M = 1364.65; colourless prism 0.140 x 0.240 x 0.330 mm³; triclinic $P\bar{1}$, a = 9.0468(5), b = 12.0453(6), c = 12.0619(7) Å, a=66.4720(10), $\beta=88.5460(10)$, $\gamma = 88.7690(10)^\circ$, V = 1204.65(11) Å³; Z = 1; $D_c = 1.881$ g/cm³; $\mu = 5.783$ mm⁻¹; T_{min}/T_{max} : 0.1676/0.5996; 23425/5849 reflections measured/unique ($R_{int} = 0.0179$), number of data/restraint /parameters 5849/0/286, $R_1(F^2) = 0.0131$ (5771 reflections, $I > 2\sigma(I)$) and w $R(F^2) = 0.0324$ (all data), final GoF = 1.034, largest difference peak: 0.988 e.Å⁻³.

Crystallographic references

S1 SAINT+, version 6.01: Area-Detector Integration Software, Bruker AXS, Madison 2001.

S2 SADABS 2016/02. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2015, 48, 3-10.

S2 (a) G. M. Sheldrick, *Acta Crystallogr. A* 1990, **46**, 467-473; (b) G. M. Sheldrick, *Acta Crystallogr. A* 2008, **64**, 112-122.

S3 G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3-8.

S4 L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849-854.

S5 P. van der Sluis, A. L. Spek, Acta Crystalogr. 1990, A46, 194–201.