Electronic Supplementary Information (ESI)

for

A new spinel high-entropy oxide $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ with fast reaction kinetic and excellent stability as anode materials for lithium ion batteries

Hong Chen, a Nan Qiu, a,* Baozhen Wu, a Zhaoming Yang, Sen Sun, a and Yuan Wang a,*

^a Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China.

* Corresponding authors

E-mail: qiun@scu.edu.cn (N. Q.) and wyuan@scu.edu.cn (Y. W.)

Table of Contents:

Figure S1. EDS analysis result of the synthesized $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ particles.

Figure S2. N₂ adsorption-desorption isotherms and the BJH pore size distribution curves of the synthesized $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ particles.

Figure S3. XPS survey scan spectrum of the synthesized $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ particles.

Figure S4. High-resolution XPS spectra of the synthesized $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ particles.

Figure S5. SEM results of the evolution process of $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ electrodes at a current density of 100 mA g⁻¹.

Figure S6. Correlation between the scan rates and corresponding currents of the $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ electrode

Figure S7. The capacitive contribution to the total current contribution for the $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ electrode at 0.1-0.8 mV s⁻¹ vs. Li⁺/Li.

Table S1. The comparison of lattice parameter, BET surface area values between $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ and some other solid solutions reported in literature.

Table S2. Summary of electrochemical performance of different transition metal oxides as anode materials for lithium ion batteries.

Table S3. The kinetic parameters of the fresh $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ half-cell and the half-cell charged to 3.0 V after 300 discharge/charge cycles.

Fig. S1 EDS analysis result of the synthesized $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ particles. The corresponding element atomic ratio indicate the homogeneous spatial distributions of each element.

Fig. S2 (a) N₂ adsorption-desorption isotherms of the synthesized $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ particles. The BJH pore size distribution curves based on (b) Adsorption dV/dlog(D) Pore Volume, (c) Desorption dV/dlog(D) Pore Volume.

Fig. S3 XPS survey scan spectrum of the synthesized $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ particles.

Fig. S4 High-resolution XPS spectra of the synthesized $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ particles: (a) Mg 1s; (b) Ti 2p; (c) O1s; (d) Fe 2p; (e) Cu 2p; (f) Zn 2p.

Fig. S5 SEM results of the evolution process of $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ electrodes at a current density of 100 mA g⁻¹. Surface morphology image of (a) fresh electrode, (b) the electrode at the potential of 3.0 V after 1st discharge/charge cycle, (c) the electrode at the potential of 3.0 V after 50th cycles, (d) the electrode at the potential of 3.0 V after 150th cycles, (e) the electrode at the potential of 3.0 V after 300th cycles.

Fig. S6 Correlation between the scan rates and corresponding currents of the $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ electrode at (a) cathodic and (b) anodic scan according to equation: $i(V)/v^{1/2} = k_1v^{1/2} + k_2$.

Fig. S7 The capacitive contribution (blue shaded region) to the total current contribution (red line) for the $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ electrode at (a) 0.1, (b) 0.2, (c) 0.4, (d) 0.6, (e) 0.8 mV s⁻¹ vs. Li⁺/Li.

Compounds	Lattice	Synthesized	BET	References
	parameters	temperature	surface	
	(Å)	(°C)	area	

			(±0.1)	
			m ² g ⁻¹	
NiFe ₂ O ₄	a = 8.3656(4)	900	6.88	Journal of Physical Chemistry C,
				2015 , <i>119</i> , 4709-4718.
$(Zn_{0.25}Ni_{0.75})Fe_2O_4$	a = 8.3605(6)	900	4.93	Journal of Physical Chemistry C,
				2015 , <i>119</i> , 4709-4718.
$(Zn_{0.5}Ni_{0.5})Fe_2O_4$	<i>a</i> = 8.3590(6)	900	2.25	Journal of Physical Chemistry C,
				2015 , <i>119</i> , 4709-4718.
$(Zn_{0.75}Ni_{0.25})Fe_2O_4$	a = 8.3663(2)	900	4.26	Journal of Physical Chemistry C,
				2015 , <i>119</i> , 4709-4718.
ZnFe ₂ O ₄	a = 8.4375(0)	900	0.79	Journal of Physical Chemistry C,
				2015 , <i>119</i> , 4709-4718.
5%ZnO.95%Fe3O4	For ZnO:	600	10.26	Electrochimica Acta 2014, 118,
	<i>a</i> = 3.249			75-80.
	<i>c</i> = 5.2046			
	For Fe ₃ O ₄ :			
	<i>a</i> = 8.4413			
Fe ₂ O ₃	<i>a</i> = 5.021	280	18.95	Electrochimica Acta 2014, 118,
	<i>c</i> = 13.734			75-80.
Fe ₂ O ₃	<i>a</i> = 5.041	900	0.5	Electrochimica Acta 2014, 118,
	<i>c</i> = 13.769			75-80.
$(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_{3}O$	<i>a</i> = 8.396	1000	12.31	This Work
4				

Materials	The	first	Capacity [mAh	Capacity	References
-----------	-----	-------	---------------	----------	------------

	discharge /	g ⁻¹] / number of	[mAh g ⁻¹] /	
	charge	cycles	current	
	capacities		density [mA g-	
	[mAh g ⁻¹]		1]	
				ACS Applied Materials &
Ni _x Co _{3-x} O ₄ nanosheets	2489/1340	1330/50 th cycle	293/1600	Interfaces 2014, 6, 9256-
				9264.
Mesoporous NiCo ₂ O ₄	1 = 1 0 /1 0 1 1	TOS (Sooth 1	202/1/00	ACS Applied Materials &
microspheres	1/12/1214	705/500 ^{ad} cycle	393/1000	Interfaces 2013, 5, 981-988.
Mesoporous ZnCo ₂ O ₄	1(00/1205	1256/100 th	1256/100 th	<i>RSC Advances</i> 2015, <i>5</i> ,
microspheres	1600/1205	cycle	430/4000	19241-19247.
Maganaraug ZnCa O				Journal of Materials
1000204	1332/979	721/80 th cycle	382/5000	Chemistry A 2013, 1, 5596-
microspheres				5602.
ZnFe ₂ O ₄ nanoparticles	1322/933	829/100 th cycle	600/1560	<i>RSC Advances</i> 2014 , <i>4</i> ,
				49212-49218.
Hollow CoFe ₂ O ₄	22(4/1220	1195/50thereale	1020/000	Nanotechnology 2012, 23,
nanospheres	2204/1230	1185/50 cycle	1030/900	055402.
	1(10/1120	806/200th angle	202/10000	<i>RSC Advances</i> 2014 , <i>4</i> ,
Porous $CoFe_2O_4$ nanosneets	1019/1139	806/200 th cycle	505/10000	27488-27492.
				ACS Applied Materials &
$Min_{0.5}Co_{0.5}Fe_2O_4$ nollow	847/526	498/500 th cycle	115/2000	Interfaces 2015, 7, 6300-
spheres				6309.
				Journal of Materials
N10.331VII10.33C00.33F62O4	955/686	490/60 th cycle		Chemistry A 2014, 2, 5041-
mesoporous nanospheres				5050.
$Ni_{0.33}Mn_{0.33}Co_{0.33}Fe_2O_4$ on	1002/(02	674/100 th cycle	300/1000	<i>RSC Advances</i> 2014, <i>4</i> ,
oxidized carbon nanotubes	1092/092			33769-33775.
$(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_{3}O$	1261/624	504/200th avala	268/2000	This work
4	1201/034	504/500 cycle	208/2000	

Table S2. Summary of electrochemical performance of different transition metal oxides as anode

 materials for lithium ion batteries.

Samples	$R_{\rm s} \left[\Omega \right]$	$R_{\rm ct} \left[\Omega \right]$	$\sigma \left[\Omega \mathrm{Hz}^{1/2} ight]$	$D_{\rm Li+}[{ m cm}^2~{ m s}^{-1}]$
The fresh half-cell	39.68	283.53	155.52	1.497×10^{-15}
The half-cell charged to	0.07	43.35	87.61	4.716×10^{-15}
3.0 V after 300 cycles				

Table S3. The kinetic parameters of the fresh $(Mg_{0.2}Ti_{0.2}Zn_{0.2}Cu_{0.2}Fe_{0.2})_3O_4$ half-cell (at the open circuit voltage, 3.0 V) and the half-cell charged to 3.0 V after 300 discharge/charge cycles.