Supplementary Information

Effect of Fe, Co and Ni promoters on MoS₂ based catalysts for

chemoselective hydrogenation of nitroarenes

Wenpeng Han^{a, b}, Shanmin Wang ^c, Xuekuan Li ^a, Ben Ma ^a, Mingxian Du ^a, Ligong Zhou ^a, Ying Yang ^a, Ye Zhang, ^{a*} Hui Ge ^{a*}

^a Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

^b University of Chinese Academy of Science, Beijing 100049, China

^c Department of Physics, Southern University of Science & Technology, Shenzhen, Guangdong, 518055, China

* Corresponding author. Tel: +86-351-4046547; 18135105377

E-mail address: <u>gehui@sxicc.ac.cn</u> (H. Ge); <u>yzhang@sxicc.ac.cn</u> (Y. Zhang)

1. The evaluation on compatibility and stability over $Ni\text{-}MoS_2/\gamma\text{-}$

Al₂O₃ catalyst

Table S1. Summary on the hydrogenation of various nitroarenes over Ni-MoS $_2/\gamma$ -Al $_2O_3$ catalyst.

		Ni-MoS ₂ /Al ₂ O ₃	R NH2	
Entry	Substrate	N ₂ H ₄ ·H ₂ O (equiv.)	Time/ h	Sel./ yield ^a (%)
1	NO ₂	3	2	99/99
2	CINO2	3	6	99/99
3	CI NO2	3	4	99/99
4	F NO ₂	3	4	98/97
5	Br NO ₂	3	4	99/99
6	NO ₂	5	8	98/97
7	CI NO ₂	5	8	99/99
8	H ₃ C NO ₂	5	12	100/99

9	H ₂ N NO ₂	8	4	100/99
10	NO ₂ NH ₂	8	10	99/98
11	H ₂ N NO ₂	8	6	100/99
12	HO NO ₂	6	16	99/99
13	H ₃ CO NO ₂	5	8	99/98
14	HOOC NO2	5	8	99/99
15	H ₃ COOC	5	8	99/99
16	NC NO ₂	3	4	99/99
17	O NO2	5	8	99/98
18	NO ₂	3	2	98/98
19	NO ₂	5	4	99/99
20	HS NO ₂	5	8	99/99

Reaction conditions: 0.1 g catalyst, 1 mmol substrate, 100 °C, 15 mL isopropyl alcohol, 1 MPa N₂, n equiv. N₂H₄·H₂O, calibration concentration of N₂H₄·H₂O is 79.2%.

Fig. S1. (a) Recyclability test; (b) Hot filtration test. After reaction for 0.5 h, the catalyst was separated under the reaction conditions. Inset of (b): The photographs showing before and after the facile separation via the centrifugation. Reaction conditions: 0.1 g catalyst, 1 mmol nitrobenzene, 100 °C, 15 mL isopropyl alcohol, 1 MPa N₂, 2 equiv. N_2H_4 ·H₂O, 1 h.

2. Catalysts characterization

ICP-AES

Table S2. The ICP-AES analysis of the metal loading.				
Catalysts	Content of metals			
NiO _x /γ-Al ₂ O ₃	Ni 2.32wt%			
MoO_3/γ - Al_2O_3	Mo 9.67wt%			
Fe-MoO ₃ /γ-Al ₂ O ₃	Fe 2.30wt%; Mo 9.71wt%			
Co-MoO ₃ /γ-Al ₂ O ₃	Co 2.26wt%; Mo 9.75wt%			
Ni-MoO ₃ /γ-Al ₂ O ₃	Ni 2.34wt%; Mo 9.77wt%			

Fig. S2. XRD patterns of γ -Al₂O₃ (a), MoS₂/ γ -Al₂O₃ (b), Co-MoS₂/ γ -Al₂O₃ (c), Ni-MoS₂/ γ -Al₂O₃ (d) and Fe-MoS₂/ γ -Al₂O₃ (e) catalysts.

XPS

Fig. S3 XPS spectra showing the binding energies of Ni $2p_{3/2}$ (a), Co $2p_{3/2}$ (b) and Fe $2p_{3/2}$ (c) in various catalysts.

Table S3. Synthesis of aniline using different intermediates as substrates over theNi-MoS $_2/\gamma$ -Al $_2O_3$ catalyst ^a

Entry	Reactant	Conv. (%)	Select. (%)
1	NO ₂	67	99
2	NO	95	98
3	NHOH	99	99
4		7	92
5		10	98

^{*a*} Reaction conditions: 0.1 g catalyst, 1 mmol substrate, 100 °C, 0.5 h, 15 mL isopropyl alcohol, 1 MPa N_2 , 2 equiv. N_2H_4 · H_2O .

Table S4. The NO adsorption on Mo edge by DFT calculation				
	Adsorption (eV)	kJ/mol		
Мо	-0.356	-34.346		
Fe	-0.365	-35.260		
Со	-0.446	-43.062		
Ni	-0.348	-33.560		