Three-component reaction of azulene, aryl glyoxal and 1,3dicarbonyl compound for the synthesis of various azulene derivatives

Gong Jing, ${ }^{\text {a }}$ Anatoly A. Peshkov, ${ }^{\text {b }}$ Jiafeng Yu, ${ }^{\text {a }}$ Sagadat Amandykova, ${ }^{\text {b }}$ Aidana Gimnkhan, ${ }^{\text {b }}$ Jianjun Huang, ${ }^{\text {a }}$ Stepan Kashtanov, ${ }^{\text {c }}$ Olga P. Pereshivko*,a,b ${ }^{\text {and }}$ Vsevolod A. Peshkov*,a,b,d

[^0]Table of content

This page	1
X-ray crystallographic analysis	2
Synthesis and characterization	6
UV/vis absorption spectra	20
Copies of ${ }^{1}$ H and ${ }^{13}$ C NMR spectra	$28-85$

X-ray crystallographic analysis

General details

Single crystals of 7b were obtained by slow evaporation from dimethylformamide. The images were interpreted and integrated with the program Diamond v.4.0 (Crystal Impact). ${ }^{1}$ Using Olex2, ${ }^{2}$ the structures were solved with the ShelXS ${ }^{3}$ structure solution program using direct methods and refined by full-matrix least-squares on F^{2} with the $\operatorname{ShelXL}{ }^{4}$ refinement package.

Crystal data for 7b

Molecular structure of 7b, showing thermal displacement ellipsoids at the 50% probability level; the dimethyl formamide (DMF) molecule acquired during the crystallization process and present in the crystal packing is not shown

Crystal data for $7 \boldsymbol{b} \cdot \boldsymbol{D M F} . \mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}, M=514.64 \mathrm{~g} / \mathrm{mol}$, triclinic, space group $\mathrm{P}-1$ (no. 2), $a=$

[^1]10.9118(6) $\AA, b=11.6167(6) \AA, c=13.1533(7) \AA, V=1363.93(13) \AA^{3}, Z=27, T=296.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)$ $=0.077 \mathrm{~mm}^{-1}$, Dcalc $=1.253 \mathrm{~g} / \mathrm{cm}^{3}, 64042$ reflections measured $\left(4.878^{\circ} \leq 2 \Theta \leq 55.058^{\circ}\right), 6259$ unique $\left(R_{\text {int }}=0.0882, \mathrm{R}_{\text {sigma }}=0.0494\right)$ which were used in all calculations. The final R_{1} was $0.0450(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1000 (all data).

Structural features:

- the unit cell contains two molecules of the compound $\left(\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}\right)$ along with two molecules of solvent $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right.$, dimethylformamide (DMF))

Composition of the unit cell of 7b

Packing diagram of the crystal structure of $\mathbf{7 b}$, viewed down the crystallographic a-axis.

Packing diagram of the crystal structure of $\mathbf{7 b}$, viewed down the crystallographic b-axis.

Packing diagram of the crystal structure of $\mathbf{7 b}$, viewed down the crystallographic c -axis.

Synthesis and characterization

General information

Unless otherwise specified, the starting materials and solvents were purchased from commercial sources and used as received. Azulene-1-carbaldehyde ${ }^{5}$ and ethyl azulene-1-carboxylate ${ }^{6}$ were synthesized following previously described protocols. Aryl glyoxal hydrates 2 were purchased or synthesized following previously described protocol. ${ }^{7}$ Melting points were measured using INESA WRR apparatus. NMR spectra were recorded using 400 MHz Bruker Avance instruments. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported relative to TMS using the residual CDCl_{3} or $\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$ signal as internal reference. HRMS were performed on a Bruker microTOF-Q III. UV-visible absorption spectra were recorded using Agilent Technologies Cary Series UV-VIS-NIR Spectrophotometer.

Screening of the reaction conditions for the synthesis of azulene derivative 4a

 1a	 2a	$+$	$80^{\circ} \mathrm{C}$	
Entry	1a:2a:3a ratio	Solvent	Time (h)	Isolated yield (\%)
1	1:1:1	MeOH	1	63
2	1:1:1	$i \mathrm{PrOH}$	1	74
3	1:1.2:1.2	$i \mathrm{PrOH}$	1	78
4	1:1.2:1.2	$i \mathrm{PrOH}$	0.5	84
5	1:1:1	DMF	0.5	58
6	1:1:1	$t \mathrm{BuOH}$	0.5	76
7	1:1:1	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	0.5	-

[^2]
Synthesis of azulene derivatives 4 via three-component reaction of azulene 1, aryl glyoxal 2 and 1,3-dicarbonyl compound 3

General procedure A

Arylglyoxal monohydrate 2 ($0.48 \mathrm{mmol}, 1.2$ equiv) was placed in a screw-capped vial and dissolved in $i \operatorname{PrOH}(2 \mathrm{~mL})$ followed by addition of azulene $\mathbf{1}(0.4 \mathrm{mmol}, 1$ equiv) and 1,3-dicarbonyl compound $\mathbf{3}$ ($0.48 \mathrm{mmol}, 1.2$ equiv). The resulting mixture was sealed, placed in an oil bath preheated at $80^{\circ} \mathrm{C}$ and stirred for 30 min . After completion of reaction, the resulting mixture was diluted with ethyl acetate. Then silica gel was added and the volatiles were removed under reduced pressure. Column chromatography with petroleum ether/EtOAc (the ratio was adjusted according to TLC) as eluent delivered azulene derivative 4 .

General procedure B

Arylglyoxal monohydrate 2 ($0.3 \mathrm{mmol}, 1.5$ equiv) was placed in a screw-capped vial and dissolved in $i \operatorname{PrOH}(1 \mathrm{~mL})$ followed by addition of azulene $1(0.2 \mathrm{mmol}, 1$ equiv) and 1,3-dicarbonyl compound 3 ($0.4 \mathrm{mmol}, 2$ equiv). The resulting mixture was sealed, placed in an oil bath preheated at $80^{\circ} \mathrm{C}$ and stirred for 1 h . Upon completion, the mixture was diluted with EtOAc and evaporated with silica gel under reduced pressure. Column chromatography with petroleum ether/EtOAc (the ratio was adjusted according to TLC) as eluent delivered azulene derivative 4.

5-(1-(Azulen-1-yl)-2-oxo-2-phenylethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (4a).

 Yield: $67 \mathrm{mg}, 84 \%$ (Procedure A, 0.2 mmol scale); purple solid; mp: $151-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.15(\mathrm{~m}, 6 \mathrm{H})$, $6.46(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5,168.1,167.6$, $151.7,141.5,140.7,137.9,137.2,135.1,134.9,133.5,131.8,129.4,128.6,124.1,123.7,123.1,117.5$, 51.0, 50.4, 29.0, 28.7; HRMS (ESI, $[\mathrm{M}+\mathrm{Na}]^{+}$) for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$calcd. 423.1315, found 423.1287 .

5-(1-(Azulen-1-yl)-2-oxo-2-phenylethyl)pyrimidine-2,4,6(1H,3H,5H)-trione (4b). Yield: $134 \mathrm{mg}, 90 \%$ (Procedure A, 0.4 mmol scale, column chromatography was conducted using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (9:1) as eluent); dark grey-blue solid; mp: $151-153{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right) \delta 8.98(\mathrm{~s}, 2 \mathrm{H}), 8.47(\mathrm{~d}$, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.43(\mathrm{~m}$,
$2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}$, tentatively overlaped with signal of water); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right) \delta 200.4,163.6,151.8$, $140.4,140.3,138.4,136.6,135.2,133.5,131.4,131.3,127.7,121.6,121.0,116.2,89.3,42.0$, one signal is tentatively overlapped with the signal of [$\left.\mathrm{D}_{6}\right] \mathrm{DMSO}$; HRMS (ESI, $[\mathrm{M}+\mathrm{Na}]^{+}$) for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$ calcd. 395.1002, found 395.1002.

2-(1-(Azulen-1-yl)-2-oxo-2-phenylethyl)-3-hydroxycyclohex-2-en-1-one (4c). Yield: 46 mg , 65\% (Procedure B, 0.2 mmol scale); dark blue solid; mp: $80-82^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.13$ (bs, $1 \mathrm{H}), 8.45(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.32-3.22(\mathrm{~m}, 3 \mathrm{H}), 7.92(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.52$ $-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.30(\mathrm{~m}, 4 \mathrm{H}), 1.99-$ $1.77(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.6,197.2,177.1,141.2,138.1,137.2,136.7,136.4$, 136.0, 134.6, 134.3, 129.7, 129.1, 124.6, 123.3, 123.1, 117.0, 113.7, 39.7, 36.8, 30.6, 20.4; HRMS (EI, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}^{+}$calcd. 379.1305, found 379.1306.

2-(1-(Azulen-1-yl)-2-oxo-2-phenylethyl)-3-hydroxy-5,5-dimethylcyclohex-2-en-1-one (4d). Yield: $267 \mathrm{mg}, 69 \%$ (Procedure A, 1 mmol scale); black-blue solid; mp: $150-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.30-8.22(\mathrm{~m}, 3 \mathrm{H}), 7.89(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-$ $7.52(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~d}, J$ $=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.23(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.3$, $196.8,175.3,141.3,138.1,137.2,136.7,136.4,136.0,134.6,134.3,129.7,129.1,124.5,123.3,123.1$, $117.0,112.7,50.6,44.1,39.8,31.6,29.4,27.1 ; \operatorname{HRMS}\left(\mathrm{EI},[\mathrm{M}+\mathrm{Na}]^{+}\right)$for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}^{+}$calcd. 407.1618, found 407.1618.

4-(1-(Azulen-1-yl)-2-oxo-2-phenylethyl)-5-hydroxy-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (4e). Yield: $95 \mathrm{mg}, 37 \%$ (Procedure A, 0.6 mmol scale, column chromatography was conducted using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether (1:1) as eluent, after which the product was washed with hexane); black-blue solid; mp: $70-72^{\circ} \mathrm{C}$; in NMR, observed as as a mixture of two interconvertible diastereomeric enol forms
$(\mathrm{dr}=2: 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.53(\mathrm{~s}, 0.67 \mathrm{H}), 10.92(\mathrm{~s}, 0.33 \mathrm{H}), 8.54(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0.67 \mathrm{H})$, $8.41(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 0.33 \mathrm{H}), 8.33-8.20(\mathrm{~m}, 3 \mathrm{H}), 7.95(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 0.67 \mathrm{H}), 7.87(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 0.33 \mathrm{H})$, $7.66-6.94(\mathrm{~m}, 13 \mathrm{H}), 3.34-3.29(\mathrm{~m}, 0.33 \mathrm{H}), 3.27-3.09(\mathrm{~m}, 0.67 \mathrm{H}), 2.86-2.50(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.8,205.0,196.3,196.1,176.3,176.8,142.6,141.30,141.28,138.2,138.1$, $137.29,137.26,136.7,136.4,136.0,134.7,134.6,134.4,134.3,129.8,129.7,129.1,128.9,128.7,127.1$, $127.0,126.8,126.7,124.4,124.2,123.41,123.38,123.3,117.1,113.7,113.5,43.8,43.6,39.9,39.7$, 38.34, 38.29, 38.25, 37.5; HRMS (EI, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{O}_{3}{ }^{+}$calcd. 433.1798, found 433.1797.

2-(1-(Azulen-1-yl)-2-oxo-2-phenylethyl)cycloheptane-1,3-dione (4f). Yield: $135 \mathrm{mg}, 91 \%$ (Procedure A, 0.4 mmol scale); purple solid; $\mathrm{mp}: 170-172^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.82(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.18(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.38$ $-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.02-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.11(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.67(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 204.2,203.0,198.9,141.9,138.2,137.2,136.8,136.7,136.0,134.7,132.8,128.7$, $128.5,123.7,123.4,123.0,117.7,71.0,45.4,44.6,24.5,24.1$; HRMS (EI, $[\mathrm{M}+\mathrm{Na}]^{+}$) for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}^{+}$ calcd. 393.1461, found 393.1461.

5-(1-(Azulen-1-yl)-2-(4-bromophenyl)-2-oxoethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-
trione (4g). Yield: $388 \mathrm{mg}, 81 \%$ (Procedure A, 1 mmol scale); black-blue solid; mp: $171-172{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.62$ $(\mathrm{d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.39(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5,167.9,167.4,151.6,141.5$, $140.6,138.0,137.3,135.0,133.87,131.85,131.80,130.8,128.7,124.3,123.3,123.2,117.6,51.0,50.2$, 29.0, 28.7; HRMS (EI, $[\mathrm{M}+\mathrm{Na}]^{+}$) for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$calcd. 501.0420, found 501.0408.

5-(1-(Azulen-1-yl)-2-(4-fluorophenyl)-2-oxoethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)trione (4h). Yield: $136 \mathrm{mg}, 81 \%$ (Procedure A, 0.4 mmol scale); purple solid; mp: 151-152 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J$
$=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,168.0,167.5,165.7(\mathrm{~d}, J=256.0$ $\mathrm{Hz}), 151.7,141.4,140.7,138.0,137.3,134.9,132.1(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 131.8,131.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 124.2$, $123.5,123.2,117.5,115.7(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 51.0,50.3,29.0,28.7$; HRMS (EI, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{4}{ }^{+}$calcd. 419.1402, found 419.1402.

5-(1-(Azulen-1-yl)-2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-1,3-dimethylpyrimidine-
$\mathbf{2 , 4 , 6 (1 H , 3 H , 5 H})$-trione (4i). Yield: $181 \mathrm{mg}, 97 \%$ (Procedure A, 0.4 mmol scale); black-blue solid; mp : $147-148^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,167.8,167.4,151.6,141.4,140.5,138.1,137.9,137.4,135.1$, $134.5(\mathrm{q}, J=32.7 \mathrm{~Hz}), 131.9,129.6,125.6(\mathrm{q}, J=3.6 \mathrm{~Hz}), 124.4,123.5(\mathrm{q}, J=273.0 \mathrm{~Hz}), 123.3,122.7$, 117.6, 51.0, 50.3, 29.0, 28.7; HRMS (EI, $[\mathrm{M}+\mathrm{Na}]^{+}$) for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$calcd. 491.1189, found 491.1189.

4-(2-(Azulen-1-yl)-2-(1,3-dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)acetyl)benzonitrile (4j). Yield: $31 \mathrm{mg}, 58 \%$ (Procedure A, 0.125 mmol scale); black-blue solid; mp: 101-103 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~d}, J=3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3,167.7,167.3,151.5,141.5,140.4$, $138.4,138.2,137.5,135.2,132.3,131.9,129.6,124.5,123.4,122.3,117.8,117.6,116.4,51.0,50.1$, 29.0, 28.7; HRMS (EI, $[\mathrm{M}+\mathrm{Na}]^{+}$) for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}^{+}$calcd. 448.1268, found 448.1259.

5-(1-(Azulen-1-yl)-2-(4-methoxyphenyl)-2-oxoethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-
trione (4k). Yield: $66 \mathrm{mg}, 77 \%$ (Procedure A, 0.2 mmol scale); dark blue solid; mp: $105-107{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-6.62(\mathrm{~m}, 4 \mathrm{H}), 7.34$
$-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,168.2,167.7,163.7,151.8,141.4,140.8$, $137.8,137.1,134.7,131.83,131.76,127.9,124.4,124.0,123.0,117.4,113.7,55.5,51.0,50.4,29.0$, 28.6; HRMS (EI, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}$calcd. 431.1601, found 431.1596.

5-(1-(Azulen-1-yl)-2-(4-(dimethylamino)phenyl)-2-oxoethyl)-1,3-dimethylpyrimidine-
$\mathbf{2 , 4 , 6 (1 H , 3 H , 5 H})$-trione (4I). Yield: $105 \mathrm{mg}, 59 \%$ (Procedure $\mathrm{A}, 0.4 \mathrm{mmol}$ scale); grey blue solid; mp : $191-193{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J$ $=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.44-6.35(\mathrm{~m}, 3 \mathrm{H})$, $3.72(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.9$, $168.4,167.9,153.5,151.9,141.5,141.1,137.6,136.9,134.6,131.8,131.7,125.5,123.8,122.7,122.6$, $117.4,110.5,51.1,50.3,39.9,28.9,28.6$; HRMS (EI, $[\mathrm{M}+\mathrm{Na}]^{+}$) for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}^{+}$calcd. 466.1737, found 466.1733 .

5-(1-(Azulen-1-yl)-2-oxo-2-(o-tolyl)ethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (4m). Yield: $141 \mathrm{mg}, 81 \%$ (Procedure A, 0.42 mmol scale); purple solid; mp: $132-134{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33-6.99(\mathrm{~m}, 6 \mathrm{H})$, $6.87-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.1,168.0,167.8,151.6,141.2,140.2,139.0,137.8,137.0,136.0,135.5,132.0,131.9$, 131.6, 128.9, 125.5, 123.9, 123.4, 123.0, 117.4, 51.6, 51.1, 28.9, 28.7, 21.3; HRMS (EI, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$calcd. 437.1472, found 437.1472.

5-(1-(Azulen-1-yl)-2-oxo-2-(thiophen-2-yl)ethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione
(4n). Yield: $274 \mathrm{mg}, 84 \%$ (Procedure A, 0.8 mmol scale); black-blue solid; $\mathrm{mp}: 99-101{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-$ $7.63(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.32(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 191.2,167.9,167.5,151.6,141.6,141.5,140.8,138.0,137.3,135.6,134.6,134.4,132.0,128.1$, $124.2,123.8,123.3,117.5,51.1,51.0,29.0,28.7$; HRMS (EI, $[\mathrm{M}+\mathrm{Na}]^{+}$) for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+}$calcd. 429.0829 , found 429.0827.

2-(1-(Azulen-1-yl)-2-(4-fluorophenyl)-2-oxoethyl)-3-hydroxycyclohex-2-en-1-one (4o). Yield: 140 $\mathrm{mg}, 62 \%$ (Procedure A, 0.6 mmol scale); dark blue solid ; mp: $182-184{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.93(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-8.25(\mathrm{~m}, 3 \mathrm{H}), 7.89(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}$, $1 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 4 \mathrm{H}), 2.59-2.31(\mathrm{~m}, 4 \mathrm{H}), 1.99-1.78(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.8,197.2,177.2,166.8(\mathrm{~d}, J=257.4 \mathrm{~Hz}), 141.3,138.2,137.3$, $136.7,136.4,134.2,132.6(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 124.3,123.4,123.2,117.0,116.3(\mathrm{~d}, J$ $=22.0 \mathrm{~Hz}), 113.5,39.6,36.8,30.6,20.4$; HRMS (EI, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FO}_{3} \mathrm{Na}^{+}$calcd. 397.1210, found 397.1210.

3-(1-(1,3-Dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)-2-oxo-2-phenylethyl)azulene-1-
carbaldehyde (4p). Yield: $240 \mathrm{mg}, 56 \%$ (Procedure A, 1 mmol scale); dark red solid; mp: $178-180^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.18(\mathrm{~s}, 1 \mathrm{H}), 9.66(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}$, $1 \mathrm{H}), 8.01-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9$, $187.1,167.9,167.4,151.5,146.3,141.0,140.7,140.3,138.6,134.7,134.2,133.9,130.8,129.3,128.7$, 128.6, 124.9, 124.8, 50.3, 49.6, 29.1, 28.7; HRMS (EI, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}$calcd. 429.1445, found 429.1445.

Ethyl 3-(1-(2-hydroxy-6-oxocyclohex-1-en-1-yl)-2-oxo-2-phenylethyl)azulene-1-carboxylate (4q). Yield: $247 \mathrm{mg}, 96 \%$ (Procedure $\mathrm{B}, 0.6 \mathrm{mmol}$ scale); dark purple solid; mp: $88-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.07(\mathrm{~s}, 1 \mathrm{H}), 9.63(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.31-$ $8.24(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.34$ $(\mathrm{s}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.32(\mathrm{~m}, 4 \mathrm{H}), 1.99-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.2$, 197.1, 177.6, 165.3, 141.7, 141.1, 139.7, 139.4, 138.1, 135.8, 135.7, $134.9,129.8,129.2,128.1,127.0,124.0,115.7,113.2,60.0,39.2,36.8,30.6,20.4,14.8$; HRMS (EI, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}^{+}$calcd. 451.1516, found 451.1510 .

Ethyl 3-(1-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-2-oxo-2-phenylethyl)azulene-1carboxylate (4r). Yield: $165 \mathrm{mg}, 90 \%$ (Procedure B, 0.4 mmol scale); dark purple solid ; $\mathrm{mp}: 88-89^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.80(\mathrm{bs}, 1 \mathrm{H}), 9.63(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.32$ (s, 1H), $8.30-8.24$ (m, 2H), $7.83-7.74$ (m, 1H), $7.67-7.59$ (m, 1H), $7.55-7.47$ (m, 3H), 7.45-7.37 $(\mathrm{m}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 4.44-4.35(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.24(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.0,196.8,175.9,165.3,141.8$, 141.1, 139.7, 139.4, 138.1, 135.80, 135.77, 134.9, 129.7, 129.2, 128.1, 126.9, 124.0, 115.7, 112.3, 60.0, 50.5, 44.1, 39.2, 31.6, 29.5, 26.9, 14.8; HRMS (EI, $[\mathrm{M}+\mathrm{Na}]^{+}$) for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}^{+}$calcd. 479.1829, found 479.1821.

Ethyl

 3-(1-(5-hydroxy-3-oxo-1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)-2-oxo-2-phenylethyl)azulene-1-carboxylate (4s). Yield: $33 \mathrm{mg}, 44 \%$ (Procedure B, 0.15 mmol scale, the product was washed with pentane after column chromatography); dark purple solid; $\mathrm{mp}: 87-89^{\circ} \mathrm{C}$; in NMR, observed as as a mixture of two interconvertible diastereomeric enol forms ($\mathrm{dr}=2: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.44(\mathrm{bs}, 0.67 \mathrm{H}), 10.93(\mathrm{bs}, 0.33 \mathrm{H}), 9.75-9.55(\mathrm{~m}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $0.67 \mathrm{H}), 8.49$ (d, $J=9.6 \mathrm{~Hz}, 0.33 \mathrm{H}), 8.39(\mathrm{~s}, 0.67 \mathrm{H}), 8.34(\mathrm{~s}, 0.33 \mathrm{H}), 8.32-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.71$ $(\mathrm{m}, 1 \mathrm{H}), 7.68-7.01(\mathrm{~m}, 11 \mathrm{H}), 4.49-4.33(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.30(\mathrm{~m}, 0.33 \mathrm{H}), 3.27-3.10(\mathrm{~s}, 0.67 \mathrm{H}), 2.90$ $-2.52(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4,204.7,196.3,196.0,176.8$, 176.2, 165.3, 142.5, 142.4, 141.7, 141.2, 141.1, 139.8, 139.6, 139.4, 138.2, 138.1, 135.79, 135.76, $134.93,134.85,129.8,129.7,129.2,128.9,128.7,128.2,128.1,127.2,127.10,127.07,127.0,126.74$, 126.70, 123.9, 123.7, 115.9, 115.8, 113.2, 113.1, 60.03, 59.99, 43.8, 43.6, 39.4, 39.2, 38.3, 38.1, 37.3, 14.8; HRMS (EI, $[\mathrm{M}+\mathrm{Na}]^{+}$) for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}^{+}$calcd. 527.1829, found 527.1816.General procedure for the synthesis of azulene-tetrahydrocinnolin-5-one conjugates 5a,5b from azulene-containing MCR adducts $\mathbf{4 c}, \mathbf{4 d}$

Azulene derivative $\mathbf{4 c}, \mathbf{d}$ (0.4 mmol , 1 equiv) was placed in a screw-capped vial and dissolved in methanol (2 mL) followed by addition of hydrazine monohydrate ($20 \mathrm{mg}, 0.4 \mathrm{mmol}, 1$ equiv). The reaction mixture was stirred for 24 h at room temperature. The reaction progress was monitored by TLC. After completion of reaction, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporated with silica gel under reduced pressure. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (19:1) as eluent delivered azulene-tetrahydrocinnolin-5-one conjugate 5a. For the isolation of product $\mathbf{5 b}$, pure $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as an eluent.

4-(Azulen-1-yl)-3-phenyl-4,6,7,8-tetrahydrocinnolin-5(1H)-one (5a). Yield: $132 \mathrm{mg}, \mathbf{9 4 \%}$; blue solid; mp: 236-238 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right) \delta 10.96(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J$ $=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 1 \mathrm{H})$, $5.77(\mathrm{~s}, 1 \mathrm{H}), 2.56-2.48\left(\mathrm{~m}, 2 \mathrm{H}\right.$, overlaps with the signal of $\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right), 2.31-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.94-$ $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, [D 6$\left.] \mathrm{DMSO}\right) \delta 193.9,150.1,147.0,140.5,138.1$, $136.9,136.2,136.1,134.8,133.2,132.0,128.9,128.4,125.8,122.7,122.6,117.3,104.6,36.7,27.7$, 24.5, 20.6; HRMS (EI, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}^{+}$calcd. 375.1468, found 375.1464.

4-(Azulen-1-yl)-8,8-dimethyl-3-phenyl-4,6,7,8-tetrahydrocinnolin-5(1H)-one (5b). Yield: 141 mg , 93%; blue solid; mp: $199-202{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right) \delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.27(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ $-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left[D_{6}\right]$ DMSO) $\delta 193.4,148.4,147.0,140.5,138.0,136.9,136.2,136.1,134.8,133.1,131.9,128.9,128.3$, $125.8,122.7,122.6,117.3,103.4,50.3,37.7,32.2,29.0,27.7,26.1$; HRMS (EI, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{ONa}^{+}$calcd. 403.1781, found 403.1774.

Synthesis of azulene-dihydroindol-4-one conjugates 7 from azulene-containing MCR adducts 4

3-(Azulen-1-yl)-1,2-diphenyl-1,5,6,7-tetrahydro-4H-indol-4-one (7a). Azulene-containing adduct 4c ($36 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was placed in a screw-capped vial and dissolved in $i \operatorname{PrOH}(1 \mathrm{~mL})$ followed by addition of aniline ($14 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv). The mixture was sealed, placed in an oil bath preheated at $80^{\circ} \mathrm{C}$ and stirred for 6 h . The resulting mixture was diluted with EtOAc and evaporated with silica gel under reduced pressure. Column chromatography with petroleum ether/EtOAc (7:1) as eluent delivered azulene-dihydroindol-4-one conjugate $7 \mathbf{7 a}$. Yield: $37 \mathrm{mg}, 89 \%$; dark blue solid; mp : $191-192{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J$ $=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.82(\mathrm{~m}, 4 \mathrm{H}), 6.79$ $-6.72(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.7,145.0,141.5,140.0,137.9,137.1,136.13,136.11,136.07,133.8,131.8,130.4,129.2$, $128.2,128.1,127.8,126.6,123.2,122.5,122.0,119.7,117.0,116.8,39.2,23.8,23.6$; HRMS (EI, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}^{+}$calcd. 414.1852, found 414.1843.

7b

3-(Azulen-1-yl)-6,6-dimethyl-1,2-diphenyl-1,5,6,7-tetrahydro-4H-indol-4-one (7b). Azulenecontaining adduct $4 \mathbf{d}$ ($38 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was placed in a screw-capped vial and dissolved in $i \mathrm{PrOH}(1 \mathrm{~mL})$ followed by addition of aniline ($10 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv). The mixture was sealed, placed in an oil bath preheated at $80^{\circ} \mathrm{C}$ and stirred for 8 h . The resulting mixture was diluted with EtOAc and evaporated with silica gel under reduced pressure. Column chromatography with petroleum ether/EtOAc (17:3) as eluent delivered azulene-dihydroindol-4-one conjugate 7b. Yield: $21 \mathrm{mg}, 48 \%$; dark blue solid; mp: $238-240{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 1 \mathrm{H})$, $6.97-6.83(\mathrm{~m}, 4 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{bs}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 193.2,143.8,141.5,140.1,137.8,137.1,136.1,136.0,133.9,131.8,130.3,129.2,128.17$, $128.15,127.7,126.5,123.1,122.5,122.0,118.5,117.0,116.6,53.2,37.6,35.1,28.8$; HRMS (EI, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NONa}^{+}$calcd. 464.1985, found 464.1985.

3-(Azulen-1-yl)-2-(4-fluorophenyl)-1-phenyl-1,5,6,7-tetrahydro-4H-indol-4-one (7c). Azulenecontaining adduct 40 ($150 \mathrm{mg}, 0.4 \mathrm{mmol}, 1$ equiv) was placed in a screw-capped vial and dissolved in $i \operatorname{PrOH}(2 \mathrm{~mL})$ followed by addition of aniline ($56 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.5$ equiv). The mixture was sealed, placed in an oil bath preheated at $80^{\circ} \mathrm{C}$ and stirred for 8 h . The resulting mixture was diluted with EtOAc and evaporated with silica gel under reduced pressure. Column chromatography with petroleum ether/EtOAc $(9: 1 \rightarrow 17: 3)$ as eluent followed by washing with pentane delivered azulene-dihydroindol-4-one conjugate 7c. Yield: $108 \mathrm{mg}, 63 \%$; dark blue solid; mp: $180-182^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.26$ $-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.63-6.54(\mathrm{~m}, 2 \mathrm{H}), 2.87$ $-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.8,161.5$ $(\mathrm{d}, J=246.9 \mathrm{~Hz}), 145.0,141.6,140.0,137.7,137.2,136.2,136.1,136.0,132.7,132.0(\mathrm{~d}, J=8.0 \mathrm{~Hz})$, $129.3,128.3,128.1,127.9(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 123.0,122.7,122.1,119.7,117.1,117.0,114.9(\mathrm{~d}, J=21.5$ $\mathrm{Hz}), 39.2,23.8,23.6$; HRMS (EI, $[\mathrm{M}+\mathrm{H}]^{+}$) for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{FNO}^{+}$calcd. 432.1758, found 432.1754.

3-(Azulen-1-yl)-1-(3-chlorophenyl)-2-phenyl-1,5,6,7-tetrahydro-4H-indol-4-one (7d). Azulenecontaining adduct $\mathbf{4 c}(71 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) was placed in a screw-capped vial and dissolved in $i \operatorname{PrOH}(1 \mathrm{~mL})$ followed by addition of 3 -chloroaniline ($28 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.1$ equiv). The mixture was sealed, placed in an oil bath preheated at $80^{\circ} \mathrm{C}$ and stirred for 24 h . For the next purification steps, three batches of 0.2 mmol scale were combined together. The resulting mixture was diluted with EtOAc and evaporated with silica gel under reduced pressure. Column chromatography with petroleum ether/EtOAc $(9: 1 \rightarrow 17: 3)$ as eluent followed by washing with pentane delivered azulene-dihydroindol-4-one conjugate 7d. Yield: 94 mg , 35% (combined yield for three reactions on 0.2 mmol scale); dark blue solid; mp: $188-190^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.99$ $(\mathrm{m}, 2 \mathrm{H}), 6.99-6.82(\mathrm{~m}, 4 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.16$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.6,144.8,141.5,140.0,139.0,137.1,136.18,136.15,136.0$, $134.7,133.7,131.3,130.3,130.2,128.5,128.2,127.9,126.9,126.5,122.9,122.6,122.1,119.9,117.2$, 117.1, 39.1, 23.8, 23.6; HRMS (EI, [M+Na] ${ }^{+}$) for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{ClNONa}^{+}$calcd. 470.1282, found 470.1282.

3-(Azulen-1-yl)-1-(3,5-dimethoxyphenyl)-2-phenyl-1,5,6,7-tetrahydro-4H-indol-4-one
(7e). Azulene-containing adduct $4 \mathbf{c}(143 \mathrm{mg}, 0.4 \mathrm{mmol}, 1$ equiv) was placed in a screw-capped vial and dissolved in $i \operatorname{PrOH}(2 \mathrm{~mL})$ followed by addition of 3,5 -dimethoxyaniline ($92 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.5$ equiv). The mixture was sealed, placed in an oil bath preheated at $80^{\circ} \mathrm{C}$ and stirred for 8 h . The resulting mixture was diluted with EtOAc and evaporated with silica gel under reduced pressure. Column chromatography with petroleum ether/EtOAc $(9: 1 \rightarrow 4: 1)$ as eluent delivered azulene-dihydroindol-4-one conjugate $7 \mathbf{7 e}$. Yield: $107 \mathrm{mg}, 56 \%$; dark blue solid; $\mathrm{mp}: 250-252^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.42(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{bs}$, $2 \mathrm{H}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 2.91-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.7,160.9,144.9,141.6,140.1,139.4,137.1,136.14,136.11,136.09,133.7,132.0,130.2$, $127.8,126.7,123.2,122.5,122.0,119.7,117.0,116.8,106.6,100.3,55.6,39.2,23.9,23.7$; HRMS (EI, $[\mathrm{M}+\mathrm{H}]^{+}$) for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{3}{ }^{+}$calcd. 474.2064, found 474.2064.

3-(Azulen-1-yl)-1-(4-methoxybenzyl)-2-phenyl-1,5,6,7-tetrahydro-4H-indol-4-one (7f). Azulenecontaining adduct $\mathbf{4 c}(71 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) was placed in a screw-capped vial and dissolved in $i \mathrm{PrOH}(1 \mathrm{~mL})$ followed by addition of 4 -methoxybenzylamine ($41 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv). The mixture was sealed, placed in an oil bath preheated at $80^{\circ} \mathrm{C}$ and stirred for 8 h . The resulting mixture was diluted with EtOAc and evaporated with silica gel under reduced pressure. Column chromatography with petroleum ether/EtOAc $(9: 1 \rightarrow 17: 3)$ as eluent delivered azulene-dihydroindol-4-one conjugate $\mathbf{7 f}$. Yield: $78 \mathrm{mg}, 85 \%$; blue solid; $\mathrm{mp}: 159-161^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.99(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-$ $7.03(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 3 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $193.5,159.1,144.2,141.4,139.9,137.0,136.12,136.05,136.03,134.1,132.0,130.7,129.5,128.3$, $127.6,127.2,123.5,122.4,121.9,119.5,116.9,116.5,114.5,55.4,47.7,39.1,23.6,23.0$; HRMS (EI, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+}$calcd. 458.2115, found 458.2115.

3-(Azulen-1-yl)-2-phenyl-1-(4-(trifluoromethyl)benzyl)-1,5,6,7-tetrahydro-4H-indol-4-one (7g). Azulene-containing adduct $\mathbf{4 c}(71 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) was placed in a screw-capped vial and dissolved in $i \operatorname{PrOH}(1 \mathrm{~mL})$ followed by addition of (4-(trifluoromethyl)phenyl)methanamine (39 mg , $0.22 \mathrm{mmol}, 1.1$ equiv). The mixture was sealed, placed in an oil bath preheated at $80^{\circ} \mathrm{C}$ and stirred for 5 h . The resulting mixture was diluted with EtOAc and evaporated with silica gel under reduced pressure. Column chromatography with petroleum ether/EtOAc ($4: 1 \rightarrow 7: 3$) as eluent delivered azulene-dihydroindol-4-one conjugate 7 g . Yield: 92 mg , 93%; dark blue solid; mp : $148-150{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-6.94(\mathrm{~m}, 8 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 1 \mathrm{H})$, $5.19(\mathrm{~s}, 2 \mathrm{H}), 2.80-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 193.4,143.9,141.65,141.64,141.5,139.9,137.1,136.2,136.1,135.9,134.1,131.6,130.6,130.1(\mathrm{~d}$, $J=32.6 \mathrm{~Hz}), 128.5,127.8,126.24,126.15(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.1(\mathrm{q}, J=272.0 \mathrm{~Hz}), 123.1,122.6,122.0$, $119.8,117.0,116.9,47.8,39.0,23.5,22.9$; HRMS (EI, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}^{+}$calcd. 496.1883, found 496.1883.

3-(Azulen-1-yl)-1-(4-chlorobenzyl)-6,6-dimethyl-2-phenyl-1,5,6,7-tetrahydro-4H-indol-4-one (7h). Azulene-containing adduct $4 \mathbf{d}(77 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) was placed in a screw-capped vial and dissolved in $i \operatorname{PrOH}(1 \mathrm{~mL})$ followed by addition of (4-chlorophenyl)methanamine ($31 \mathrm{mg}, 0.22 \mathrm{mmol}$, 1.1 equiv). The mixture was sealed, placed in an oil bath preheated at $80^{\circ} \mathrm{C}$ and stirred for 4.5 h . The resulting mixture was diluted with EtOAc and evaporated with silica gel under reduced pressure. Column chromatography with petroleum ether/EtOAc (17:3) as eluent followed by washing with pentane delivered azulene-dihydroindol-4-one conjugate 7 h . Yield: $71 \mathrm{mg}, 72 \%$; blue solid; mp : 190$192^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-6.90(\mathrm{~m}, 8 \mathrm{H})$, $6.90-6.82(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.9,142.9,141.5,139.9,137.1,136.2,136.1,136.0,134.2,133.5,131.8,130.6,129.3,128.4,127.7$, $127.2,123.1,122.5,122.0,118.5,117.0,116.6,53.2,47.5,36.8,35.3,28.8$; HRMS $\left(E I,[M+H]^{+}\right)$for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{ClNO}^{+}$calcd. 490.1932, found 490.1932.

One-pot synthesis of azulene-dihydroindol-4-one conjugate 7a

Phenylglyoxal monohydrate ($\mathbf{2 a}, 46 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) was placed in a screw-capped vial and dissolved in $i \mathrm{PrOH}(1 \mathrm{~mL})$ followed by addition of azulene ($\mathbf{1 a}, 26 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and cyclohexane-1,3-dione ($\mathbf{3 c}, 45 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv). The resulting mixture was sealed, placed in an oil bath preheated at $80^{\circ} \mathrm{C}$ and stirred for 1 h . Upon completion of this time, the aniline ($\mathbf{6 a}, 41 \mathrm{mg}, 0.44$ $\mathrm{mmol}, 2.2$ equiv) was added and the reaction was continued for another 8 h . The resulting mixture was diluted with EtOAc and evaporated with silica gel under reduced pressure. Column chromatography with petroleum ether/EtOAc (17:3) as eluent delivered azulene-dihydroindol-4-one conjugate 7a.

UV/vis absorption spectra

The UV/Vis absorption was measured in dichloromethane and in methanol at $\mathrm{c} \cong 5 \cdot 10^{-6} \mathrm{M}$.

(
(

 7d	- \circ ©			

(

				1				1		100		1		1						
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(

1							1	1		1	1	1	1		1					
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										ppm										

T	T	1	T	T	1		T	T	,	1	1	1	1	1	1		1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										ppm										

T	1	1	T	1	1	1	1	1	T	1	T	1	1	1		1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										ppm										

T	T					T	T	T	1	,	T	1	,	1			I				
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

1	1	,	1		1	1		1	,		1	1	1	1	1	1	1			
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

200	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	10	0
200	190	180	170	160	150	14	130	120	110	ppm	90	80	70	60	50	40	O	20	10	0

T	1	1			T		1	'	1	1	1	1	1	1	1	1	1			1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										ppm										

[^0]: a. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou, 215123, P.R. China.email: olga@suda.edu.cn; vsevolod@ suda.edu.cn b. Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, Block 7, Nur-Sultan 010000, Republic of Kazakhstan. email: olga.pereshivko@nu.edu.kz; vsevolod.peshkov@nu.edu.kz
 c. Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P.R. China. d. The Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan, Republic of Kazakhstan.

[^1]: ${ }^{1}$ Diamond - Crystal and Molecular Structure Visualization Crystal Impact - Dr. H. Putz \& Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany http://www.crystalimpact.com/diamond.
 ${ }^{2}$ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
 ${ }^{3}$ G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112.
 ${ }^{4}$ G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3.

[^2]: ${ }^{5}$ A. Székely, Á. Péter, K. Aradi, G. L. Tolnai and Z. Novák, Org. Lett., 2017, 19, 954.
 ${ }^{6}$ J. Dubovik and A. Bredihhin, Synthesis, 2015, 47, 538.
 7 (a) P. Wang, W.-J. Tao, X.-L. Sun, S. Liao and Y. Tang, J. Am. Chem. Soc., 2013, 135, 16849; (b) H. Batchu and S. Batra, Eur. J. Org. Chem., 2012, 2935; (c) G.-X. He, J.-M. Yuan, H.-M. Zhu, K. Wei, L.-Y. Wang, S.-L. Kong, D.-L. Mo, C.-X. Pan and G.-F. Su, Bioorg. Med. Chem. Lett., 2017, 27, 1660; (d) G. Fodor and Ö. Kovacs, J. Am. Chem. Soc., 1949, 71, 1045.

