Electronic Supplementary Information (ESI) for

Screening and characterisation of CdTe/CdS quantum dot-binding peptides for material surface functionalisation

Thanawat Suwatthanarak,^a Masayoshi Tanaka,^a Taisuke Minamide,^a Andrew J Harvie,^{b,c} Abiral Tamang,^b Kevin Critchley,^b Stephen D Evans,^b and Mina Okochi*^a

^aDepartment of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan. E-mail: okochi.m.aa@m.titech.ac.jp

^bSchool of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom.

^cDepartment of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.

Contents

- Fig. S1. Fluorescence emission spectrum of prepared CdTe/CdS QDs.
- Fig. S2. Surface plasmon resonance sensorgram of CD9 antibody immobilization.
- Fig. S3 Fluorescence emission spectrum of the QDs before and after the antibody functionalisation.

Fig. S1 Fluorescence emission spectrum of prepared CdTe/CdS QDs. The QDs were excited with 400 nm.

Fig. S2 Surface plasmon resonance sensorgram of CD9 antibody immobilization. CD9 antibody was immobilized on CM5 sensor chip using amine coupling.

Fig. S3 Fluorescence emission spectra of the QDs before and after the antibody functionalization in case of using (i) P9 (NKFRGKYKGGGPWSLNR) and (ii) P10 (NKFRGKYKGGGSGVYK). The QDs were excited with 400 nm.