

Fig. S1. The kinetics of $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}(1), \mathrm{C}_{6} \mathrm{H}_{10}(\mathrm{O})$ (2) and $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OOH}$ (3) accumulation upon $\mathrm{C}_{6} \mathrm{H}_{12}$ oxidation by $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MeCN}, 40^{\circ} \mathrm{C}$.
Reaction conditions: $($ a $),(b),(d):\left[\mathrm{C}_{6} \mathrm{H}_{12}\right]_{0}=\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{0}=1.8 \mathrm{M} ;(c):\left[\mathrm{C}_{6} \mathrm{H}_{12}\right]_{0}=0.36 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{0}=1.8$ M. (a), (b), (c): $\left[\mathrm{VO}(a c a c)_{2}\right]_{0}=0.06 \times 10^{-3} \mathrm{M} ;(d):\left[\mathrm{VO}(a c a c)_{2}\right]_{0}=0.6 \times 10^{-3} \mathrm{M} ;(a),(d):\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]_{0}=$ $50 \times 10^{-3} \mathrm{M}$; (b), (c): $\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]_{0}=5 \times 10^{-3} \mathrm{M}$.

Fig. S2. The relationships between $\mathrm{VO}(a c a c)_{2} / \mathrm{OxalH}$ molar ratios and the resulted solutions pH .

Fig. S3. Relationships between ORP of VO(acac) 2^{-} based system and pH in dependence of $\mathrm{H}_{2} \mathrm{O}_{2}$ added.

Fig. S4. CV of $\mathrm{VO}(a c a c)_{2}$ solutions (anodic scans) taken for various $\mathrm{VO}(a c a c)_{2}$ content (initial concentration of $\mathrm{VO}(a c a c)_{2}$ in mM is indicated by the respective color), $\mathrm{MeCN}, 20^{\circ} \mathrm{C}$.
Inset: the height of 0.98 V (squares) and -1.75 V (circles) peaks in dependence of $\mathrm{VO}(a c a c)_{2}$ concentration.

Fig. S5. CV of $\mathrm{VO}(a c a c)_{2}+\mathrm{OxalH}$ solutions (anodic scans) taken in dependence of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ content (concentration of $\mathrm{VO}(a c a c)_{2}$ was equal 1.25 mM ; initial concentration of OxalH in mM is indicated by the respective color), $\mathrm{MeCN}, 20^{\circ} \mathrm{C}$.
Inset: the height of -1.55 V peak alteration in dependence of OxalH concentration.

Fig. S6. CV of 2 mM OxalH solutions, $\mathrm{MeCN}, 20^{\circ} \mathrm{C}$ (anodic scans).

Scheme S 1 . The principal electrical scheme for measuring low-frequency complex dielectric spectra: dispersive power capacitor (B, n) and parallel $\left(R v C_{V}\right)$ circuit.

Parallel $R_{V} C_{V}$ circuit characterizes the bulk impedance of solution under study: electrical resistance and dielectric polarization.

Dispersive capacitor is characterized by fractional power law dispersion with small exponent n - 1 according to the expression
$C^{*}(\omega)=C_{1}(\omega)-j C_{2}(\omega)=B\{\sin (\omega t)-j \cos (\omega t)\} \omega^{n-1}$
and represents dielectric response of double electrical layers formed near both solution-metal interfaces of filled up cell. Full impedance of this electrical equivalent electrical circuit could be written in the form:

$$
\bar{Z}(\omega)=Z_{1}(\omega)-j Z_{2}(\omega)=\frac{1}{B\{\cos (\omega t)+j \sin (\omega t)\} \omega^{n}}+\frac{R_{V}}{1+j \omega R_{V} C_{V}}
$$

Thereby complex capacity of the circuit can be expressed as:

$$
C^{*}(\omega)=C_{1}(\omega)-j C_{2}(\omega)=\left\{\frac{1}{B\{\sin (\omega t)-j \cos (\omega t)\} \omega^{n-1}}+\frac{j \omega R_{V}}{1+j \omega R_{V} C_{V}}\right\}^{-1}
$$

