Supporting information

Investigation on the synthesis conditions of CuMoO₄ by in-situ method and

their photocatalytic properties under visible light irradiation

Wencheng Tan, Jingfei Luan*

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China. E-mail: chendibd71@126.com

* Correspondence: jfluan@nju.edu.cn; Tel.: +86-199-5193-9498; Fax: +86-25-8968-0397

Fig.S1. Synthesis route of CuMoO₄

Fig.S2. Observed first order kinetic plots for the photocatalytic degradation of rhodamine B or 1H-Benzotriazole with CuMoO₄ as catalyst under visible light irradiation

Fig.S3. Observed first order kinetic plots for the photocatalytic degradation of rhodamine B with CuMoO₄ or N-doped TiO₂ as photocatalyst under visible light irradiation

Fig.S4. The mass spectra of degraded rhodamine B by using CuMoO₄ photocatalyst.

Fig.S5. EPR spectra of CuMoO₄ in aqueous dispersion for •OH and in methanol dispersion for $•O_2^-$