Supporting information

pH-Switchable LCST/UCST-type Thermosensitive Behaviors of Phenylalanine-modified Zwitterionic Dendrimers

Mamiko Tamaki¹, Chie Kojima^{1*}

¹Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

Experimental Section

Synthesis

PAMAM-Suc-Phe was synthesized using the PAMAM dendrimer of G4 with an ethylenediamine core, in accordance with our previous report.¹ PAMAM-Phe-Suc was synthesized, as follows. PAMAM-Phe of G4 was synthesized in accordance with our previous report.² Then, PAMAM-Phe (121.4 mg, 4.08 µmol) was dissolved in 125 mM NaHCO₃ aqueous solution (3 mL). An excess of succinic anhydride (Suc) of approximately 100 eq was added to the dendrimer solution, followed by overnight stirring at room temperature. The reaction solution was adjusted to approximately pH 10. The carboxy-terminal dendrimers were purified by dialysis (molecular weight cut-off [MWCO]: 1000) in distilled water, and white solids were obtained after the lyophilization, yielding 67 mg (55 %). PAMAMG3-Phe-Suc and PAMAMG5-Phe-Suc were also synthesized by the same method except the starting materials. Yields of

PAMAMG3-Phe-Suc and PAMAMG5-Phe-Suc were 46 mg (57 %) and 47 mg (48 %), respectively. PAMAM-Ile-Suc was synthesized using the same method as PAMAM-Phe-Suc, except for the starting material: PAMAM-Ile. The yield was 39 mg (77 %).

PAMAM-Phe-SO₃Na was synthesized, in accordance with the previous report.³ 1.3-propane sultone (142.3 mg, 1.17 mmol) was dissolved in acetonitrile (2.8 mL), and PAMAM-Phe (92.2 mg, 3.09 μmol) was dissolved in 125 mM NaHCO₃ aqueous solution (2.8 mL). These two solutions were mixed and stirred at room temperature under a nitrogen atmosphere. The reaction solution was adjusted to approximately pH 9. After five days, an aqueous HCl solution was added to decrease the pH to 2, and then the pH was increased to 8 by adding an aqueous NaOH solution. The dendrimer was dialyzed with distilled water, dialyzed with 125 mM NaHCO₃ aqueous solution, purified once more by dialyzed with distilled water, and lyophilized. The yield was 61 mg (62 %). PAMAMG3-Phe-SO₃Na and PAMAMG5-Phe-SO₃Na were also synthesized by the same method except the starting materials. Yields of PAMAMG3-Phe-SO₃Na and PAMAMG5-Phe-SO₃Na were 78 mg (88 %) and 82 mg (97 %), respectively.

PAMAM-SO₃Na was synthesized using the same method as PAMAM-Phe-SO₃Na, except for the starting material: the amino-terminal PAMAM dendrimer. The yield was 45 mg (74 %). QPAMAM-Phe-Suc and QPAMAM-Phe-SO₃Na were synthesized in accordance with the previous report.⁴ PAMAM-Phe-Suc (34.0 mg, 1.13 μ mol) was mixed with methyl iodide (43 μ L, 0.69 mmol) in DMF (3 mL), and the mixture was stirred at 37 °C for 25 h. The dialysis was performed using a 2 M NaCl aqueous solution followed by distilled water. White solids were obtained by the lyophilization. The same synthesis was performed by using PAMAM-Phe-SO₃Na (17.8 mg, 0.56 μ mol) and 31 μ L (0.50 mmol) of methyl iodide. Yields of QPAMAM-Phe-Suc and QP

Phe-SO₃Na were 29 mg (77 %) and 5 mg (26 %), respectively.

PAMAM-Suc-AMBA was synthesized, as follows. PAMAM-Suc was synthesized in accordance with our previous report;¹ PAMAM-Suc (43.2 mg, 1.96 µmol) was dispersed in dimethyl sulphoxide (DMSO) (3 mL) and stirred for 1h. Then, methyl-4-(aminomethyl) benzoate hydrochloride (AMBA-OMe-HCl, 56.9 mg, 0.282 mmol), 1-[bis(dimethylamino)methyliumyl]-1*H*-benzotriazole-3-oxide hexafluorophosphate (HBTU, 0.11 g, 0.30 mmol), and triethylamine (TEA, 41 µL, 0.29 mmol) were added to the dendrimer solution, followed by overnight stirring at room temperature. Subsequently, 1 mL of distilled water was added to quench the reaction. The dendrimer was purified by dialysis (MWCO: 1000) in methanol. PAMAM-Suc-AMBA-OMe was obtained by the evaporation of methanol and the subsequent lyophilization. The yield was 44 mg (72 %). PAMAM-Suc-AMBA-OMe (14.2 mg, 0.46 µmol) was then dissolved in methanol (2 mL), and 4 M NaOH of methanol solution (500 µL) was added. After stirring at 4 °C for 2 h, these dendrimers were dialyzed (MWCO: 1000) in distilled water. White solids were obtained by freeze-drying, producing a yield of 13 mg (110 %).

Obtained dendrimers were characterized by ¹H NMR spectra (Figure S1), except PAMAM-Suc-AMBA-OMe and PAMAM-Suc-AMBA. PAMAM-Phe-Suc: ¹H NMR (D_2O) containing 400 MHz): δ 2.17-2.20 NaOD. (m. Suc and NCH₂CH₂CONHCH₂CH₂N), (br, $NCH_2CH_2CONHCH_2CH_2N$), 2.38 2.55 (br. $NCH_2CH_2CONHCH_2CH_2N),$ 2.75-3.07 (br. NCH₂CH₂CONHC<u>H</u>₂CH₂N, $NCH_2CH_2CONHCH_2CH_2N$ and H_8 -Phe), 4.29 (br, H_{α} -Phe), 7.05-7.13 (m, phenyl). PAMAM-Phe-Ile: ¹H NMR (D₂O containing NaOD, 400 MHz): δ 0.71 -0.75 (br H_a-Ile), 1.03 and 1.28 (br CHCHCH₃CH₂CH₃-Ile), 1.69 (CHCHCH₃CH₂CH₃-Ile), 2.25-2.36 (m, NCH₂CH₂CONHCH₂CH₂N and Suc), 2.46 (br, NCH₂CH₂CONHCH₂CH₂N), 2.65 (br, NCH₂CH₂CONHCH₂CH₂N), 3.93 NCH₂CH₂CONHCH₂CH₂N (br, and NCH₂CH₂CONHCH₂CH₂N). PAMAM-Phe-SO₃Na: ¹H NMR (D₂O containing NaOD, 400 MHz): δ 1.72 NHCH₂CH₂CH₂SO₃Na), 2.16-2.24 (br, (m, $NCH_2CH_2CONHCH_2CH_2N$ and NHCH₂CH₂CH₂SO₃Na), 2.44(br, NCH₂CH₂CONHCH₂CH₂N), 2.65-2.72 (m, NCH₂CH₂CONHCH₂CH₂N), 2.84 (br, NHCH₂CH₂CH₂SO₃Na), 2.96 (br, H_{β} -Phe), 3.13 (br, NCH₂CH₂CONHCH₂CH₂N, $NCH_2CH_2CONHCH_2CH_2N$) 3.28 (br, H_{α} -Phe) 7.08-7.19 (m, phenyl). PAMAM-SO₃Na: ¹H NMR (D₂O containing NaOD, 400MHz): δ 1.75 (br, NHCH₂CH₂CH₂SO₃Na), 2.27 NCH₂C<u>H</u>₂CONHCH₂CH₂N), 2.48-2.77 NCH₂CH₂CONHCH₂CH₂N, (br, (br, NCH₂CH₂CONHCH₂CH₂N, NHCH₂CH₂CH₂SO₃Na and NHCH₂CH₂CH₂SO₃Na), 3.15 (br, NCH₂CH₂CONHCH₂CH₂N). QPAMAM-Phe-Suc: ¹H NMR (D₂O, 400MHz): δ 2.24-2.40 (m, Suc), 2.67 (m, N⁺CH₂CH₂CONHCH₂CH₂N and H_β-Phe), 2.98 (br, N⁺CH₃), 3.12 N⁺CH₂CH₂CONHCH₂CH₂N, N⁺CH₂CH₂CONHCH₂CH₂N), (br. 3.33 $(N^+CH_2CH_2CONHCH_2CH_2N)$, 3.50 (br, $N^+CH_2CH_2CONHCH_2CH_2N)$, 4.36 (br, H_{α} -Phe), 7.13-7.22 (m, phenyl). QPAMAM-Phe-SO₃Na: ¹H NMR (D₂O, 400 MHz): δ 1.79 (br, $N^+CH_2CH_2CH_2SO_3Na)$, 2.21-2.31 $(N^+CH_2CH_2CH_2SO_3Na), 2.63-2.72$ (br, $N^+CH_2CH_2CONHCH_2CH_2N$, 2.78 (br, N^+CH_3), 2.88 $(H_{\beta}-Phe),$ 2.98 (br, N⁺CH₂CH₂CONHC<u>H₂CH₂N</u> and $N^+CH_2CH_2CONHCH_2CH_2N),$ 3.20-3.24 (br, N⁺CH₂CH₂CH₂SO₃Na), N⁺CH₂CH₂CONHCH₂CH₂N), 3.35 (br, 3.57 (br, $N^+CH_2CH_2CONHCH_2CH_2N$, 4.00 (br, H_a -Phe), 7.17-7.27 (m, phenyl).

Since PAMAM-Suc-AMBA-OMe and PAMAM-Suc-AMBA were insoluble in any solvents, the binding of Suc and AMBA to the dendrimer was confirmed by the Fourier-transform infrared (FT-IR) spectra (Figure S2). IR of PAMAM-Suc-AMBA: 1118 cm⁻¹ (1,4-substituted aromatics) and 1725 cm⁻¹ (aromatic CH stretching). IR of PAMAM-Suc-

AMBA-OMe: 850 cm⁻¹ (methyl group), 1118 cm⁻¹ (1,4-substituted aromatics) and 1725 cm⁻¹ (aromatic CH stretching).

Characterization

¹H NMR spectra were obtained by using ¹H-NMR (400 MHz) (JEOL Ltd., Tokyo, Japan). The infrared (IR) spectra were recorded using a JASCO FTIR-4600 spectrometer (Jasco Inc., Tokyo, Japan).

Microscopic observation was performed by using an inverted fluorescence microscope (ECLIPSE Ti-U) (Nikon Corp., Tokyo, Japan) equipped with a glass heater unit for cell culture (C-140A) (BLAST Inc., Kanagawa, Japan). The dendrimer solutions $(1 \text{ mg} / \text{mL}, \sim 100 \text{ }\mu\text{L})$ were prepared on a slide glass and observed at room temperatures of 40°C and 60°C.

The ζ-potential was measured by ELSZ-DN2 (Otsuka Electronics, Osaka, Japan) at 25 °C. Sample solutions (1 mg/mL) were prepared using 0.01 M HCl (pH 2) and 0.01 M NaOH (pH 12) containing 10 mM NaCl. Sample solutions at different pH were prepared by mixing these acidic and basic sample solutions.

Temperature-dependent transmittance measurement

The dendrimer-containing buffer solutions (dendrimer 1 mg/mL, buffer 20 mM) were prepared. Phosphate solutions (NaH₂PO₄ and Na₂HPO₄) and acetate solutions (CH₃COONa and CH₃COOH) were mixed to adjust to above pH 6 and pH 4-6, respectively. Glycine-HCl buffer was used to adjust to pH 3 and lower. The dendrimercontaining buffer solutions containing 150 mM NaCl were also prepared. In comparison of the dendrimer generations, the dendrimer-containing buffer solutions (32 μ M) were prepared. The temperature-dependent transmittance at 500 nm was measured using a Jasco Model V-630 UV/Vis spectrophotometer equipped with ETC-717 (Jasco Inc., Tokyo, Japan). The heating rate was 1.0 °C/min.

Potentiometric pH titration

5 mL of dendrimer aqueous solutions (0.5 mg / mL) were prepared by using 0.01 M HCl. 0.01 M NaOH of aqueous solution was dropped into this solution, and the pH was monitored to analyze the pKa using a pH titrator system (AT-710) (Kyoto Electronics Industry, Kyoto, Japan). The solution temperature was controlled at 20°C and 50°C using a thermostatic chamber NCB-500 (Tokyo Rikakikai Co, Ltd., Tokyo, Japan).

Separation of rose bengal (RB) from aqueous solutions

RB (175 μ mol) and PAMAM-Phe-SO₃Na (32 μ mol) were mixed in 1 mL of 20 mM phosphate buffer (pH 6.5). The mixture was incubated at 4 °C or 60 °C for 30 min. Before and after centrifugation (15000 g, 5 min) at 4 °C or 40 °C, the absorption spectra of the mixture (RB 4 μ M) were measured by the UV/Vis spectrophotometer. The same experiment was performed using PAMAM-SO₃Na instead of PAMAM-Phe-SO₃Na. The residual RB (%) was calculated from the ratio of the absorbance of RB before and after centrifugation.

[References]

- (1) M. Tamaki, D. Fukushima, C. Kojima, RSC Adv., 2018, 8, 28147-28151.
- (2) K. Kono, H. Akiyama, T. Takahashi, T. Takagishi, A. Harada, *Bioconjugate Chem.*, 2005, 16, 208-214.

- (3) H.-T. Chen, M. F. Neerman, A. R. Parrish, E. E. Simanek, J. Am. Chem. Soc., 2004, 126, 10044-10048.
- (4) J. H. Lee, Y. B. Lim, J. S. Choi, Y. Lee, T. I. Kim, H. J. Kim, J. K. Yoon, K. Kim, J. S. Park, *Bioconjugate Chem.*, 2003, 146, 1214-1221.

Table S1. Numbers of terminal group and bound compounds to different-generation

 dendrimers synthesized in the present study.

dendrimer	terminal group	bound	
		Phe	Suc/SO ₃ Na
PAMAMG3-Phe-Suc	32	32*	31
PAMAMG5-Phe-Suc	128	128*	120
PAMAMG3-Phe-SO ₃ Na	32	28*	30
PAMAMG5-Phe-SO ₃ Na	128	112*	121

*Estimated from the ¹H NMR spectrum of PAMAMG3/G5-(Boc-Phe).

Figure S1. ¹H NMR spectra of (a) PAMAM-Suc-Phe, (b) PAMAM-(Boc-Phe), (c) PAMAM-Phe-Suc, (d) PAMAM-Phe-SO₃Na, (e) QPAMAM-Phe-Suc, (f) QPAMAM-Phe-SO₃Na and (g) PAMAM-Ile-Suc in D₂O with (a-c,f) and without NaOD (d,e) except PAMAM-(Boc-Phe) (b, DMSO-d6). The result of PAMAM-Suc-Phe was referred to our previous report.¹

Figure S2. pH titration profiles of PAMAM-Suc-Phe (a and b), PAMAM-Phe-Suc (c and d) and PAMAM-Phe-SO₃Na (e and f) at 20°C (a, c, and e) and 50°C (b, d, and f).

Figure S3. The degree of protonation (α) of PAMAM-Suc-Phe (a), PAMAM-Phe-Suc (b) and PAMAM-Phe-SO₃Na (c) as a function of pH. Red line: pKa1, blue line: pKa2; solid line (20 °C), and dotted line (50 °C).

Figure S4. FT-IR spectra of PAMAM-Suc, PAMAM-Suc-AMBA-OMe and PAMAM-Suc-AMBA.

Figure S5. Temperature-dependent transmittance curves of (a) PAMAM-Ile-Suc and (b) PAMAM-Suc-AMBA at various pHs.

Figure S6. Temperature-dependent transmittance curves of (a) QPAMAM-Phe-Suc and (b) QPAMAM-Phe-SO₃Na at various pHs

Figure S7. Temperature-dependent transmittance curves of (a) PAMAM-Phe-Suc and (b) PAMAM-Phe-SO₃Na in absence (solid lines) and presence (dotted lines) of 150 mM NaCl.

Figure S8. Temperature-dependent transmittance curves of PAMAM-Phe-Suc with different generations at (a) pH 4 (LCST) and (b) pH 5.5 (UCST).

Figure S9. Temperature-dependent transmittance curves of PAMAM-Phe-SO₃Na with different generations at (a) pH 5 (LCST) and (b) pH 6.5 (UCST).

Figure S10. Temperature sensitivity of 1mg/mL of (a) PAMAM-Phe-SO₃Na and (b) PAMAM-SO₃Na at pH 6.5 in absence and presence of RB at different ratios.