Supplementary Information

Lophiostomins A-D, new 3,4-dihydroisocoumarin derivatives from the endophytic fungus *Lophiostoma* sp. Sigrf10

Ziling Mao,^a Mengyao Xue,^a Gan Gu,^a Weixuan Wang,^a Dianpeng Li,^b Daowan Lai,^{*a} and Ligang Zhou ^{*a}

^a Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; E-mail: dwlai@cau.edu.cn (D.L.); lgzhou@cau.edu.cn (L.Z)

^b Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guilin 541006, China

Table of contents

Figure S1. The optimized, predominant conformers of 1 calculated at the B3lyp/6-31 g(d) level in
the gas phase (≥1% population)3
Figure S2. Calculated CD spectra for 1 at three different levels and the experimental spectrum of
1
Figure S3. The optimized, predominant conformers of (3R, 4R)-2 calculated at the B3lyp/6-31 g(d)
level in the gas phase (≥1% population)4
Figure S4. HRESIMS spectrum of 14
Figure S5. ¹ H NMR spectrum of 1 (DMSO- <i>d</i> ₆ , 400 MHz)5
Figure S6. ¹³ C NMR spectrum of 1 (DMSO- <i>d</i> ₆ , 100 MHz)5
Figure S7. HMBC spectrum of 16
Figure S8. NOESY spectrum of 16
Figure S9. HRESIMS spectrum of 27
Figure S10. ¹ H NMR spectrum of 2 (DMSO- <i>d</i> ₆ , 400 MHz)7
Figure S11. ¹³ C NMR spectrum of 2 (DMSO- <i>d</i> ₆ , 100 MHz)8
Figure S12. HMBC spectrum of 28
Figure S13. NOESY spectrum of 29
Figure S14. HRESIMS spectrum of 39
Figure S15. ¹ H NMR spectrum of 3 (CD ₃ OD, 400 MHz)10
Figure S16. ¹³ C NMR spectrum of 3 (CD ₃ OD, 100 MHz)10
Figure S17. HMBC spectrum of 311
Figure S18. NOESY spectrum of 3
Figure S19. HRESIMS spectrum of 412
Figure S20. ¹ H NMR spectrum of 4 (CD ₃ OD, 400 MHz)12
Figure S21. ¹³ C NMR spectrum of 4 (CD ₃ OD, 100 MHz)13
Figure S22. HMBC spectrum of 4

Figure S1. The optimized, predominant conformers of **1** calculated at the B3lyp/6-31 g(d) level in the gas phase (\geq 1% population)

Figure S2. Calculated CD spectra for 1 at three different levels and the experimental spectrum of 1

Figure S3. The optimized, predominant conformers of (3R, 4R)-**2** calculated at the B3lyp/6-31 g(d) level in the gas phase (\geq 1% population)

m/z	Calc m/z	Diff (ppm)	Z	Abund	Formula	lon
237.0766	237.0768	-1.06	-1	162370	$C_{12}H_{13}O_5$	(M-H)⁻

Figure S4. HRESIMS spectrum of 1

Figure S5. ¹H NMR spectrum of 1 (DMSO-*d*₆, 400 MHz)

Figure S8. NOESY spectrum of 1

m/z	Calc m/z	Diff (ppm)	Z	Abund	Formula	lon
237.0766	237.0768	-0.95	-1	197103.5	C ₁₂ H ₁₃ O ₅	(M-H)⁻

Figure S9. HRESIMS spectrum of 2.

Figure S10. ¹H NMR spectrum of 2 (DMSO-d₆, 400 MHz)

Figure S13. NOESY spectrum of 2

195147.1

C24H28NaO10

(2M+Na)+

Figure S14. HRESIMS spectrum of 3

499.1575

-1.06

1

499.1569

Figure S18. NOESY spectrum of 3

m/z	Calc m/z	Diff(ppm)	z	Abund	Formula	lon
239.0915	239.0914	0.3	1	68578	C12H15O5	(M+H)+
261.0733	261.0733	-0.03	1	19660	C12H14NaO5	(M+Na)+
499.1568	499.1575	-1.26	1	1805.9	C24H28NaO10	(2M+Na)+

Figure S19. HRESIMS spectrum of 4

Figure S22. HMBC spectrum of 4