Supporting Information

Efficient Cu-catalyzed intramolecular O-arylation for synthesis of benzoxazoles in water \dagger

Yanling Tang, Minxin Li, Hui Gao, Gaoxiong Rao and Zewei Mao*
College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, P.R. China

1. Experimental section

1.1 General considerations

Starting materials were commercially available and analytically pure without purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectras were recorded on a Bruker AV 400 spectrometer (Bruker Company, Germany), using TMS as standard. High-resolution mass spectra were performed on an ESI Q-TOF MS spectrometer (Micromass, England).

1.2 Synthesis of ligand DPPAP

To a stirred solution of 1-(2-aminoethyl)pyrrolidine ($2.28 \mathrm{~g}, 20 \mathrm{mmol}$) and triethylamine (3.03 $\mathrm{g}, 30 \mathrm{mmol})$ in dry DCM (50 mL), acryloyl chloride ($2.26 \mathrm{~g}, 25 \mathrm{mmol}$) was added and reaction mixture was stirred for 12 h at room temperature. After completion of the reaction as indicated by TLC, the reaction was quenched by the addition of $5 \% \mathrm{NaOH}(20 \mathrm{~mL})$ and was extracted with DCM $(3 \times 30 \mathrm{~mL})$. The organic layer was washed by $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, and dried using anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo. Then diphenylphosphine ($4.65 \mathrm{~g}, 25 \mathrm{mmol}$), $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$ and TEAOH ($25 \% \mathrm{wt}, 0.2 \mathrm{~mL}$) was add to the residue in sequence for 24 h . When the reaction was completed, the mixture was concentrated in vacuo to form crude amide. After that, amide was dissolved in dry THF (50 mL) , and $\mathrm{LiAlH}_{4}(1.52 \mathrm{~g}, 40 \mathrm{mmol})$ was added slowly. The reaction was carried out at 60 ${ }^{\circ} \mathrm{C}$ for 12 h . The crude product was dried and purified by column chromatography (DCM) to obtain ligand DPPAP. Pale green oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta: 7.39-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 5 \mathrm{H})$, $3.58(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.74(\mathrm{~m}, 3 \mathrm{H}), 2.61(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-2.53(\mathrm{~m}, 4 \mathrm{H}), 2.04-2.09(\mathrm{~m}, 2 \mathrm{H})$, $1.72-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.69(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 138.50,138.37,132.61,132.43$, $130.64,130.55,128.59,128.47,128.38,128.27,128.21,55.31,53.98,50.67,50.53,47.78,25.92$, 25.76, 25.51, 25.40, 23.22; HRMS-ESI: m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{P}(\mathrm{M}+\mathrm{H})^{+} 341.2141$ found 341.2145 .
1.3 General procedure for the synthesis of benzoxazoles (2)

To a stirred solution of the o-halobenzanilides $\mathbf{1}(1 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($202 \mathrm{mg}, 2 \mathrm{mmol}$) and DPPAP ($17 \mathrm{mg}, 0.1 \mathrm{mmol}$) in water $(3 \mathrm{~mL})$ at $110^{\circ} \mathrm{C}$ for 12 h . After cooled to room temperature, the reaction was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The organic layer was dried using anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and purified by column chromatography to afford respective products.

Compound 2a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.18-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.48(\mathrm{~m}$, $1 \mathrm{H}), 7.40-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.85,150.64,142.07$, 131.31, 128.73, 127.50, 127.08, 124.94, 124.43, 119.92, 110.45; HRMS-ESI: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 196.0757$ found 196.0759.
Compound 2b: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.50-$ $7.73(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 163.30,150.74,142.27$, $142.00,129.63,127.62,124.86,124.48,119.88,110.50,21.62$; HRMS-ESI: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 210.0913$ found 210.0910 .
Compound 2c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.16(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.52-$ $7.74(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 4 \mathrm{H}), 2.72(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 163.35,150.78,148.28,142.30,128.48,127.76,124.89,124.70,124.51,119.91,110.53$, 28.98, 15.23; HRMS-ESI: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 224.1070$ found 224.1069.

Compound 2d: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.54-$ $7.56(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ $163.32,162.48,150.83,142.44,129.53,124.72,124.55,119.86,119.76,114.50,110.50,55.57$; HRMS-ESI: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 226.0863$ found 226.0865.
Compound 2e: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.52-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.36,161.87,150.79,142.44,129.49,124.65,124.49,119.71$, 119.61, 114.92, 110.46, 63.81, 14.82; HRMS-ESI: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 240.1019$ found 240.1018

Compound 2f: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.17-8.21(\mathrm{dd}, J=5.4 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.74(\mathrm{~m}$, $1 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ $166.10,163.59,162.15,150.82,142.15,129.89,129.80,125.15,124.68,123.58,123.55,120.05$, 116.28, 116.06, 110.58; HRMS-ESI: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FNO}(\mathrm{M}+\mathrm{H})^{+} 241.0663$ found 241.0661 .

Compound 2h: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.55-$ $7.57(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.19$, $150.92,142.18,137.90,129.40,128.98,125.84,125.47,124.87,120.24,110.74$; HRMS-ESI: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClNO}(\mathrm{M}+\mathrm{H})^{+} 230.0367$ found 230.0366.
Compound 2i: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.14-8.16(\mathrm{dd}, J=2.1 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.86(\mathrm{~m}$, $1 \mathrm{H}), 7.62-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.61(\mathrm{dd}, J=11.4 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 161.11,150.75$, $141.85,133.65,132.03,131.97,131.52,127.05,126.44,125.70,124.78,120.65,110.87$; HRMSESI: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClNO}(\mathrm{M}+\mathrm{H})^{+} 230.0367$ found 230.0366 .
Compound 2j: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.15(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 151.32,141.93,135.98$, 131.40, 126.12, 126.01, 125.20, 120.61, 110.97; HRMS-ESI: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{12} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$ 263.9977 found 263.9975.

Compound 2k: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta: 8.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 162.22,150.87$, $142.15,132.33,129.10,126.33,126.23,126.23,125.48,124.86,120.24,110.73$; HRMS-ESI: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrNO}(\mathrm{M}+\mathrm{H})^{+} 273.9862$ found 273.9862 .
Compound 2l: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta: 8.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 161.58,150.99$,
$142.05,127.97,126.04,126.01,125.92,125.06,120.54,110.91$; HRMS-ESI: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 264.0631$ found 264.0632.
Compound 2m: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta: 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.71(\mathrm{~m}, 2 \mathrm{H})$, $7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 161.62$, 150.96, 142.02, 130.74, 129.66, 128.20, 128.05, 128.02, 125.85, 125.05, 124.65, 124.61, 120.46, 110.90; HRMS-ESI: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 264.0631$ found 264.0631.

Compound 2n: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta: 8.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.72(\mathrm{~m}$, $3 \mathrm{H}), 7.40-7.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 161.30,151.38,141.78,139.13,132.37$, $132.05,131.17,127.26,127.20,125.83,124.90,120.70,111.05$; HRMS-ESI: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 264.0631$ found 264.0628 .
Compound 20: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta: 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.97(\mathrm{dd}$, $J=5.2 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 2 \mathrm{H})$, 7.34-7.37(m, 2H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 163.33,151.01,142.37,134.88,133.11,129.07$, $128.89,128.27,128.03,127.91,127.01,125.29,124.76,124.54,124.09,120.16,110.71$; HRMSESI: m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 246.0913$ found 246.091 .

DATE $=2019 / 09 / 01$
TIME $=03: 00$
INSTRUM $=$ spect
PULPROG $=$ zg30
F1 (1H)
SI $=65536$
SF $=400.13$
SN_p $=8012.821$

3. HRMS spectra

MS Formula Results: + Scan (0.2283 min) Sub (WYN-4.d)

m/z		Ion	Formula	Abundanco						
-	34.2145	($\mathrm{M}+\mathrm{H}$) +	C21 H30 N2P\|	1576775						
	Bost	Formula (M)	Ion Formula	Scoro	Cross Samo	Calcm/z	Dff(ppm)	Max Makh	Abund Match	Spacing Match
	\checkmark	C21H29 N2P	C21H30 N2P	97.22		341.2141	0.98	99.28	99.44	90.46

MS Formula Results: + Scan (1.0476 min) Sub (A-1.d)

MS Formula Results: + Scan (1.1486 min) Sub (A-2.d)

m/z		Ion								
\square		(M+H)+	4513.2							
	Best	Formula (M)	Ion Formula	Score	Cross Score	Calc m/z	Diff (ppm)	Mass Match	Abund Match	Spacing Match
\pm	\sqrt{V}	$\mathrm{C} 13 \mathrm{H8} \mathrm{CINO}$	C13 H9 CIN O	93.71		230.0367	0.8	99.69	81.13	96.85

MS Formula Results: + Scan (1.0955 min) Sub (A-3.d)

m/z		Ion	Formula	Abundance						
\square	224.1069	$(\mathrm{M}+\mathrm{H})+$	C15 H14 N O	97181.7						
	Best	Formula (M)	Ion Formula	Score	Cross Score	Calc m/z	Diff (ppm)	Mass Match	Abund Match	Spacing Match
$\pm+$	\sqrt{V}	C 15 H 13 NO	C15 H14 N O	98.22		224.107	0.21	99.98	94.13	99.58

MS Formula Results: + Scan (1.0407 min) Sub (A-4+.d)

+	Best	Formula (M)	Ion Formula	Score	Cross Score	Calc m/z	Diff (ppm)	Mass Match	Abund Match	Spacing Match
	\checkmark	C13 H8FNO	C13 H9FNO	99.56		214.0663	0.75	99.75	99.75	98.96

[^0]MS Formula Results: + Scan (1.0317 min) Sub (A-5.d)

m / z		Ion	Formula	Abundance						
\square	273.9862	$(\mathrm{M}+\mathrm{H})+$	C13 H9 BrN O	10135.1						
\pm	Best	Formula (M)	Ion Formula	Score	Cross Score	Calc m/z	Diff (ppm)	Mass Match	Abund Match	Spacing Match
	\checkmark	$\mathrm{C} 13 \mathrm{H8} \mathrm{BrNO}$	C 13 H 9 BrNO	91.94		273.9862	2.04	97.55	99.18	72.05

MS Formula Results: + Scan (0.7492 min) Sub (A-6.d)

MS Formula Results: + Scan (1.1186 min) Sub (A-7.d)

m/z		Ion	Formula ${ }^{\text {a }}$ Abundance							
	264.0628	(M+H)+	C14 H9 F3 N O	36473.3						
	Best	Formula (M)	Ion Formula	Score	Cross Score	Calc m/z	Diff (ppm)	Mass Match	Abund Match	Spacing Match
+	V	C14 H8 F3N O	C14 H9 F3 N O	97.94		264.0631	1.02	99.41	99.73	92.84

MS Formula Results: + Scan (1.3701 min) Sub (A-8.d)

m / z		Ion	Formula	Abundance						
\square	264.0631	$(\mathrm{M}+\mathrm{H})+$	C14 H9 F3 N O	16555.1						
Best		Formula (M)	Ion Formula	Score	Cross Score	Calc m/z	Diff (ppm)	Mass Match	Abund Match	Spacing Match
\pm	\checkmark	C14 H8 F3N O	C14 H9 F3 N O	99.05		264.0631	-0.13	99.99	97.36	99.19

MS Formula Results: + Scan (1.1046 min) Sub (A-9.d)

m/z		Ion	Formula	Abundance						
	264.0632	(M+H)+	C14 H9 F3 N O	1655.3						
	Best	Formula (M)	Ion Formula	Score	Cross Score	Calc m/z	Diff (ppm)	Mass Match	Abund Match	Spacing Match
\pm	\checkmark	C14 H8 F3N O	C14 H9F3N O	75.51		264.0631	-0.31	99.94	67.04	36.81

MS Formula Results: + Scan (1.4162 min) Sub (A-10.d)

[^1]MS Formula Results: + Scan (0.7976 min) Sub (A-11.d)

m/z		Ion	Formula	Abundance						
\square	230.0366	(M+H)+	C 13 H 9 Cl N O	56916.5						
	Best	Formula (M)	Ion Formula	Score	Cross Score	Calc m/z	Diff (ppm)	Mass Match	Abund Match	Spacing Match
\pm	\checkmark	$\mathrm{C} 13 \mathrm{H8} \mathrm{CINO}$	C 13 H 9 ClNO	98.31		230.0367	0.42	99.92	96.08	97.75

MS Formula Results: + Scan (0.9264 min) Sub (A-12.d)

m/z		Ion	Formula	Abundance						
	226.0865	(M+H)+	C14 H12 N O2	56757						
	Best	Formula (M)	Ion Formula	Score	Cross Score	Calc m/z	Diff (ppm)	Mass Match	Abund Match	Spacing Match
+	$\sqrt{ }$	C14 H11 N O2	C14 H12 N O2	99.27		226.0863	-0.95	99.57	98.29	99.86

MS Formula Results: + Scan (0.9366 min) Sub (A-13.d)

m/z		Ion	Formula	Abundance						
	240.1018	(M+H)+	C15 H14 N O2	164253.1						
	Best	Formula (M)	Ion Formula	Score	Cross Score	Calc m/z	Diff (ppm)	Mass Match	Abund Match	Spacing Match
+	\checkmark	C15 H13 N O2	C15 H14 N O2	98.37		240.1019	0.42	99.91	96.06	98.06

MS Formula Results: + Scan (1.1206 min) Sub (A-14.d)

[^2]
[^0]:

[^1]:

[^2]:

