Supporting Information

Highly sensitive turn-off fluorescent detection of cyanide in aqueous medium using

dicyanovinyl substituted phenanthridine fluorophore

Saravanakumar Manickam and Sathiyanarayanan Kulathu Iyer*

Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology,

Vellore-632 014, Tamil Nadu, India. E-mail: sathiya_kuna@hotmail.com

Table of contents

Sl. No	Title	Page no
1	Figures	S2
2	NMR Spectra	S3
3	Tables	S6

SI Figure S1 IR spectrum of 7 and 7+CN adduct

SI Figure S2 ¹H and ¹³C NMR spectra of compound 5

SI Figure S3 ¹H and ¹³C NMR spectra of compound 7

KNOEV

SI Figure S4 ¹³C NMR spectra of compound 7+CN

SI Figure S5 HRMS spectra of compound: 5

SI Figure S6 HRMS spectra of compound: 7

SI Figure S7 HRMS spectra of compound: 7+CN. Exact mass (M) calculated 537.2085, mass obtained in m/z 537.2083

SI Table S1 The comparisons of Fluorescence "*off*" cyanide detection sensor LOD of **7** in the previous and present works

Name of the receptor	Solvent/supported systems	Method used	Detection limit	Application	References
Calorimetric sensing of cyanide based on dipyrrin adducts	Dichloromethane	Calorimetric sensing	3.6, 4.2 and 7.1μM	-	Org. Biomol. Chem., 2012 , 10, 4201
Carbazole based hemicyanine	Acetonitrile	Ratiometric sensing	0.54 µM	TLC Plate	Dalton Trans., 2013 , 42, 10682
Cyanide detection in aqueous solution using carbazole	ACN:H ₂ O (9:1)	Fluorescence "off"	0.126 μΜ	Test paper Strips	RSC. Adv., 2014 , 4, 22902
Solvatochromic AIE luminogens as supersensitive and highly efficient CN- detection	Aqueous solution	Fluorescence "off"	0.2 μΜ	Test paper Strips	Chem. Sci., 2014 , 5, 2710
Cyanide detection based on triphenylimidazole derivatives	Acetonitrile	Fluorescence "off"	0.1 μM	-	Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014 , 124, 97-101
A new coumarin based fluorogenic cyanide sensing	ACN:H ₂ O (1:1)	Fluorescence "on"	0.14 μM	CN ⁻ detection visualized on TLC Plate and CN ⁻ determination in water samples.	RSC. Adv., 2015 , 5, 96905
Cyanide in aqueous media using novel AIEE fluorophores	DMSO	Fluorescence "off"	0.29 µM	-	RSC. Adv., 2015 , 5, 12191
7-azaindole based ratiometric fluorescent sensor	THF:H ₂ O (9:1)	Ratiometric sensing	2.1 μM	Test paper Strips	Dyes and Pigments, 2015 , 123, 1-7
Detection of cyanide based on a novel dicyanovinyl phenylacetylene	ACN:HEPES buffered solution (9:1)	Fluorescence "on"	0.68 μΜ	CN ⁻ determination in water samples	New. J. Chem., 2017 , 41, 4058
Selective recognition of cyanide based on the FRET mechanism	Dimethylformamide	Fluorescence "on"	63 nM	Color changes in Silica gel plates	J.Org. Chem. 2017, 82, 6259-6267
Detection of cyanide based on a dicyanovinyl pyrazoles	ACN:H ₂ O 1%	Fluorescence "off"	6.8 µM	Test paper Strips	J.Org. Chem. 2017, 82, 13376-13385
Carbazole based cyanide detection	DMSO	Fluorescence "off"	67.4 nM	Test paper Strips	Dyes and Pigments, 2019 , 164, 165-173
Pheanthridine based cyanide detection	Acetonitrile-water (1%)	Fluorescence "off"	39.3 nM	CN ⁻ detection visualized on Test paper Strips, Logic gate and CN ⁻ determination in water samples.	Present work

Compound	Experim	ental]	Fheoretical	
	$\lambda_{abs}(nm)$	3	Wavelength	Oscillator	State	Key Transitions
			_	strength	Involved	-
7	368	0.51	365.63	0.4252	$S3 \rightarrow S0$	HOMO-1 \rightarrow LUMO 89%
7+CN	320	0.27	332.91	0.5462	$S10 \rightarrow S0$	HOMO-2 \rightarrow LUMO 98%

 Table S2 UV-Vis spectra characteristic of 7 and 7+CN- by experimental and theoretical