
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Synthesis of water-dispersible, plate-like perovskites and their core—shell nanocrystals

Muneharu Minakawa, Yoshiro Imura and Takeshi Kawai*

Department of Industrial Chemistry, Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
kawai@ci.kagu.tus.ac.jp

Figure S1. TEM images of nanocrystals after reducing (a) K₂PtCl₄ and (b) HAuCl₄ in water containing (CH₃NH₃)₂PdCl₄ perovskite.

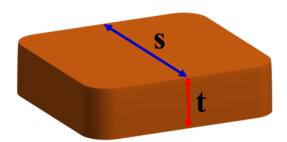


Figure S2. Schematic illustration of a plate-like nanocrystal.

Table S1. Amounts of C, H, N, Pd and Cl in 7.5 mg of (C18AAH₂)PdCl₄ determined by CHN elemental analysis and ICP-MS.

	CHN (wt%)	ICP-MS (wt%)	Amount of substance (×10 ⁻⁵ mol)
C	44.85	-	28.0
Н	8.16	-	60.7
\mathbf{N}	9.39	-	5.02
Pd	-	14.4	1.01
Cl	-	18.6	3.92

The elemental ratios determined by combined CHN elemental analysis and ICP-MS are in agreement with those determined theoretically.

Table S2. FT-IR band positions of the plate-like nanocrystals. [cm⁻¹]

	CH ₂ stretching			
	antisymmetric	symmetric	amide I	amide II
(C18AAH ₂)PdCl ₄	2922	2852	1664	1552
C18AAH ₂ Cl ₂	2922	2852	1662	1554
C18AA	2918	2849	1646	1546

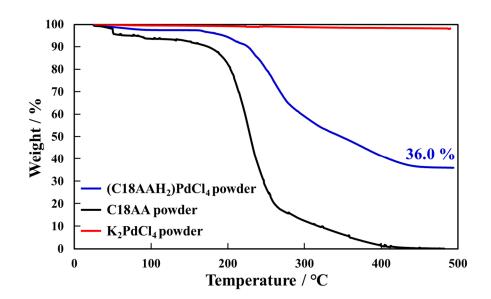


Figure S3. TG thermograms of (C18AAH₂)PdCl₄, C18AA and K₂PdCl₄ powders.

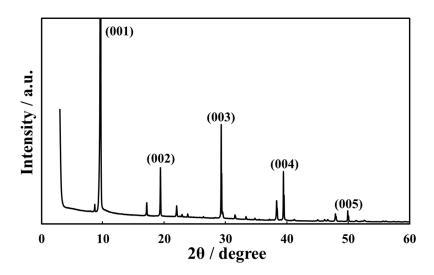


Figure S4. XRD pattern of (CH₃NH₃)₂PdCl₄.

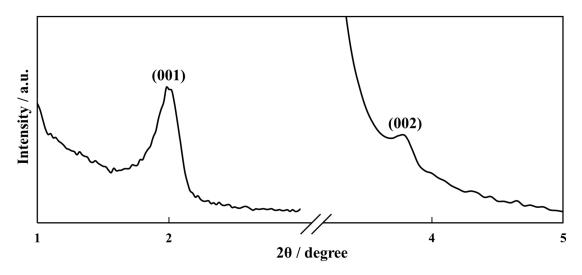


Figure S5. XRD pattern of (C18AAH₂)PdCl₄.

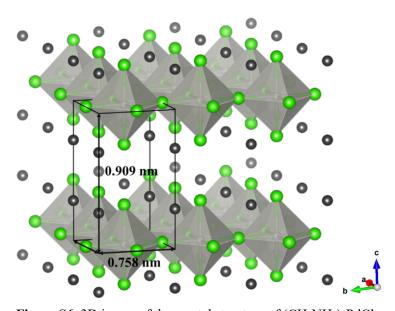


Figure S6. 3D image of the crystal structure of (CH₃NH₃)₂PdCl₄.

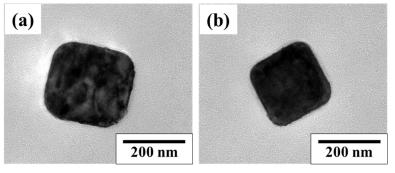


Figure S7. TEM images of plate-like nanocrystals prepared using (a) C16AA and (b) C14AA.

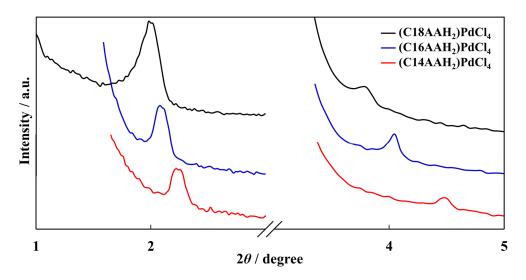


Figure S8. XRD patterns of (CnAAH₂)PdCl₄.

Table S3. The *d* spacings of plate-like nanocrystals prepared from C16AA and C14AA.

	θ /deg		_		
	first	second	d spacing /nm	CnAA layer length/nm	CnAA molecular length/nm ^{ref}
C18AA	1.96	3.88	4.50	3.74	2.8
C16AA	2.08	4.05	4.24	3.48	2.6
C14AA	2.24	4.50	3.94	3.18	2.4

Ref: C. Morita, H. Tanuma, C. Kawai, Y. Ito, Y. Imura, and T. Kawai, Langmuir, 2013, 29, 1669-1675.

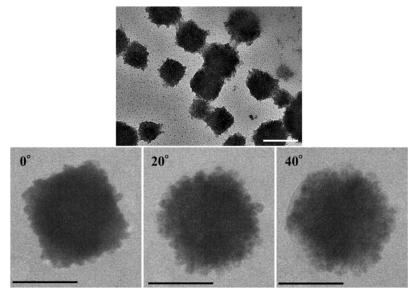
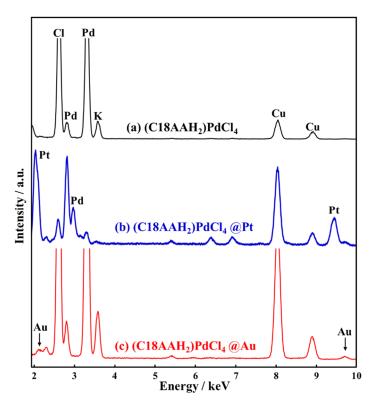
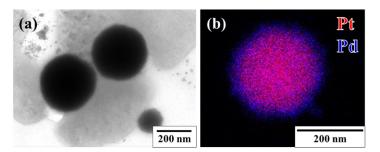
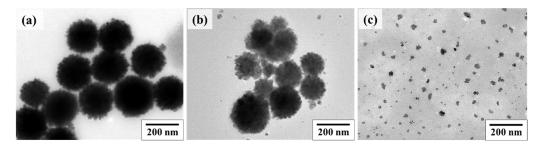





Figure S9. TEM images of (C18AAH₂)PdCl₄@Pt core–shell nanocrystals. Scale bar:100 nm.

Figure S11. TEM image and scanning TEM elemental map of spherical products obtained when the molar ratio of AscA: K_2PtCl_4 was 1.5:1.

Figure S12. TEM images of the spherical products obtained when the molar ratio of AscA:K₂PtCl₄ was (a) 6:1, (b) 12:1 and (c) 30:1.

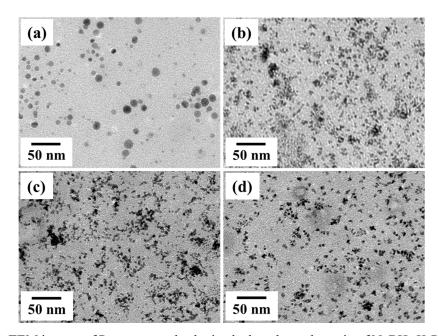
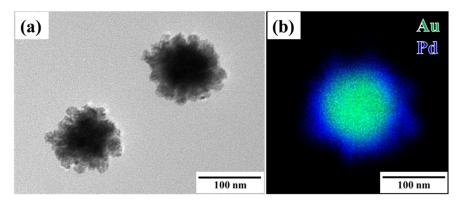



Figure S13. TEM images of Pt nanocrystals obtained when the molar ratio of NaBH₄: K_2 PtCl₄ was (a) 3:1, (b) 6:1, (c) 12:1 and (d) 30:1.

Figure S14. (a) TEM image and (b) scanning TEM map of Au@Pd core—shell nanoparticles obtained when the molar ratio of AscA:HAuCl₄ was 3:1.