Supporting information for

Novel huperzine A based NMDA antagonists: insights from molecular docking, ADME/T and molecular dynamics simulation studies

Dilep Kumar Sigalapalli,^a Raghu Rangaswamy^b and Neelima D. Tangellamudi^{a,*}

^aDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India

^bDepartment of Bioinformatics Alagappa University Karaikudi - 630 003 Tamil Nadu, India

*,a Corresponding author; E-mail: neelima.niperhyd@gov.in, tdneelima@gmail.com

Contents

Protein sequence alignment	02
Binding site evaluation	03
Derivatized compounds of Huperzine A	04
Molecular docking protocol validation	05
Molecular docking analysis	06-11
Molecular dynamics simulation	11-12
Simulation quality analysis	12-14
RMSD values of free protein with that of the bound proteins	<mark>14</mark>
Simulation Interactions Diagram (SID)	15

Protein sequence alignment:

Figure S1. Sequence alignment of GluN1 from *Homo sapiens* (UniProt Q05586) and *Xenopus laevis* (PDB ID: 5UN1).

Figure S2. Sequence alignment of GluN2B from *Homo sapiens* (UniProt Q13224) and *Xenopus laevis* (PDB ID: 5UN1).

Binding site evaluation:

Table S1. Average SiteMap values across NMDA receptor

S. No	Site name	Site score	D score	Size	Hydrophobic	Volume
1	Site-I	1.125	1.194	2211	1.920	4920.335
2	Site-II	1.038	1.037	488	0.590	1299.970
3	Site-III	1.122	1.150	342	1.585	648.613
4	Site-IV	1.057	1.102	333	1.101	1005.333
5	Site-V	1.111	1.159	316	1.666	728.189

Figure S3. Site points (white spheres) and SiteMap surface (maroon colour contour) for Site-I binding site of NMDA receptor.

Derivatized compounds of Huperzine A:

Figure S4. The derivatized compounds of Huperzine A.

Molecular docking protocol validation:

The docking protocol was validated by redocking of the bound ligand MK-801 in the active site of NMDA receptor using GLIDE module of Schrödinger software. The bound and docked conformations of MK-801 (RMSD 0.0806 Å) showed similar interactions and binding pose at the binding site. This analysis establishes the acceptability of docking protocol and thus can be extended to dock investigated molecules in the active site of NMDA receptor.

Figure S5. Superimposition of bound co-crystal (cyan colour) and docked conformation of co-crystal (burnt orange colour) in the binding site of NMDA receptor (PDB ID: 5UN1).

Molecular docking analysis:

Table S2. GLIDE docking results for designed Huperzine A analogues at active site ofNMDA receptor (PDB ID: 5UN1).

S. no	Ligand name	Ligand structure	Docking score	Interactions	
			=	Hydrophobic	H- bonds
1	MK-801	HN	-7.365	Met631(A), Val634(A), Ala635(A), Leu626(B), Ala627(B), Tyr629(B), Val623(D), Leu626(D), Ala627(D)	-
2	Huperzine A	CH ₃ H NH ₂ O	-6.970	Met631(A), Val634(A), Ala635(A), Phe597(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala635(C), Ala622(D), Val623(D), Leu626(D), Ala627(D)	-
3	I	CH ₃ N CO ₂ Me	-7.006	Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Val623(D), Leu626(D), Ala627(D)	-
4	п	CH ₃ H N CO ₂ Me	-6.684	Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Ala630(C), Met631(C), Val634(C), Ala635(C), Tyr637(C), Phe597(D), Leu626(D), Ala627(D)	-
5	III	HO NH ₂	-6.903	Met631(A), Val634(A), Ala635(A), Phe597(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Val623(D), Leu626(D), Ala627(D)	-
6	IV	HO CO ₂ Me	-6.546	Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	-

7	V	CH ₃	-6.289	I A
8	VI	HO OH CH ₃ N	-6.614	N
9	VII	HO NH ₂ CH ₃	-6.761	N N N
10	VIII	CH ₃	-6.960	N I A
11	IX	MeO NH ₂ CH ₃ N F	-6.441	N H A
12	X	MeO N CH ₃ O	-7.311	I N H
13	NM1	O NH CH ₃ N F	-7.173	N I A
14	NM2	O ^T Br CH ₃ N, CI	-6.612	N V T
		U_		

Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	Thr630(D)
Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Val623(D), Leu626(D), Ala627(D)	-
Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Met631(C), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	-
Met631(A), Val634(A), Ala635(A), Leu626(B), Ala627(B), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	-
Met631(A), Val634(A), Ala635(A), Phe597(B), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	-
Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Ala630(C), Met631(C), Val634(C), Ala635(C), Phe597(D), Leu626(D), Ala627(D)	-
Met631(A), Val634(A), Ala635(A), Leu626(B), Ala627(B), Tyr629(B), Ala622(D), Val623(D), Leu626(D), Ala627(D)	
Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	

15	NM3	CH ₃ CONH ₂	-7.365	Met631(A), Val634(A), Ala635(A), Leu626(B), Ala627(B), Tyr629(B), Val623(D), Leu626(D), Ala627(D)	
16	NM4	CF ₃ CO ₂ Me	-7.148	Val634(A), Ala635(A), Leu626(B), Tyr629(B), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	
17	NM5		-7.102	Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala622(D), Val623(D), Leu626(D), Ala627(D)	
18	NM6		-7.298	Met631(A), Val634(A), Ala635(A), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala635(C), Ala622(D), Val623(D), Leu626(D), Ala627(D)	
19	NM7		-7.011	Met631(A), Val634(A), Ala635(A), Phe597(B), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Val623(D), Leu626(D), Ala627(D)	Leu626(B)
20	NM8		-6.495	Met631(A), Val634(A), Ala635(A), Phe597(B), Leu626(B), Ala627(B), Met631(C), Val634(C), Ala635(C), Leu626(D), Ala627(D)	
21	NM9		-6.246	Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Ala630(C), Met631(C), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	
22	NM10		-7.304	Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Met631(C), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	
23	NM11	CH ₃ Br	-5.721	Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Ala622(D), Val623(D), Leu626(D), Ala627(D)	

24	NM12	CH ₃ N F	-7.331
25	NM13	MeO CH ₃ N F	-7.193
26	NM14	CF ₃ CF ₃ N O O O M	-7.475
27	NM15		-7.388
28	NM16	CONHME CH ₃ N F	-7.542
29	NM17	CONHMe CH ₃ N Br CONHMe	-7.178
30	NM18		-6.404
31	NM19	CH ₃ H N O	-6.839
32	NM20	CH ₃ F O HN CO ₂ Me	-7.722

Met631(A), Val634(A), Ala635(A), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala635(C), Ala622(D), Val623(D), Leu626(D), Ala627(D)
Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala622(D), Val623(D), Leu626(D), Ala627(D)
Met631(A), Val634(A), Ala635(A), Phe597(B), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Val623(D), Leu626(D), Ala627(D)
Met631(A), Val634(A), Ala635(A), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D), Ala631(D)
Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Val623(D), Leu626(D), Ala627(D)
Met631(A), Val634(A), Ala635(A), Phe597(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)
Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Ala630(C), Met631(C), Val634(C), Ala635(C), Phe597(D), Val623(D), Leu626(D), Ala627(D)
Met631(A), Val634(A), Ala635(A), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)
Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala622(D), Val623(D), Leu626(D), Ala627(D)

33	NM21		-7.123	Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Tyr629(B), Met631(C), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	
34	NM22	CH ₃ N O NH	-7.558	Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	
35	NM23	CH ₃ N Br O NH	-7.036	Met631(A), Val634(A), Ala635(A), Leu626(B), Tyr629(B), Met631(C), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	
36	NM24	O NH	-7.386	Met631(A), Val634(A), Ala635(A), Leu62 Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala622(D), Val623(D), Leu626(D), Ala627(D)	6(B)
37	NM25	CH ₃ N O NH	-7.273	Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Tyr629(B), Val634(C), Ala635(C), Ala619(D), Leu595(D), Ala622(D), Val623(D), Leu626(D), Ala627(D)	
38	NM26	O NH O	-7.208	Met631(A), Val634(A), Ala635(A), Val623(B), Leu626(B), Ala627(B), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	
39	NM27	CH ₃ N, CI O, NH	-7.365	Met631(A), Val634(A), Ala635(A), Leu626(B), Tyr629(B), Met631(C), Val634(C), Ala635(C), Val623(D), Leu626(D), Ala627(D)	

Molecular dynamics simulation:

Figure S6. Average RMSD of C-alphas of protein and ligand complexes (a) NM14-5UN1,
(b) NM16-5UN1, (c) NM20-5UN1 and (d) NM22-5UN1 during molecular dynamics simulation (100 ns).

Figure S7. Bar-chart representation of protein-ligand contacts of (a) NM14-5UN1, (b) NM16-5UN1, (c) NM20-5UN1 and (d) NM22-5UN1 complexes during molecular dynamics simulation.

Simulation quality analysis:

Table S	3. Thermodynamics and the second seco	mic properties	of NM28- 5UN1	complex	observed	during	molecular
dynamic	s simulation.						

Properties	Time	Average	Standard	Slope (ps ⁻¹)
	duration		deviation	
Total energy	0ps	-553039.708	490.896	-0.002
(kcal/mol)	100ps	-553039.643	142.450	-0.002
	1000ps	-553039.564	103.576	-0.002
	10000ps	-553035.673	95.499	-0.003
	50000ps	-553039.666	75.035	-0.002
Potential	0ps	-673674.854	411.323	-0.002
energy	100ps	-673674.836	129.568	-0.002
(kcal/mol)	1000ps	-673674.774	102.579	-0.002
	10000ps	-673670.487	95.859	-0.003
	50000ps	-673674.816	75.081	-0.002
Temperature	0ps	298.742	0.838	0.000

(K)	100ps	298.741	0.145	0.000
	1000ps	298.740	0.047	0.000
	10000ps	298.739	0.013	0.000
	50000ps	298.740	0.005	0.000
Pressure (bar)	0ps	1.402	62.664	0.000
	100ps	1.400	6.996	0.000
	1000ps	1.362	2.272	0.000
	10000ps	1.359	1.075	0.000
	50000ps	1.393	0.699	0.000
Volume (Å ³)	0ps	2002998.364	2049.943	-0.006
	100ps	2002998.083	479.333	-0.006
	1000ps	2002995.069	345.851	-0.006
	10000ps	2002990.303	290.735	-0.008
	50000ps	2002998.555	213.145	-0.006

Table S4. Thermodynamic properties of MK-801-5UN1 complex observed during moleculardynamics simulation.

Properties	Time	Average	Standard	Slope (ps ⁻¹)
	duration		deviation	
Total energy	0ps	-552851.770	495.571	-0.002
(kcal/mol)	100ps	-552851.703	148.515	-0.002
	1000ps	-552850.964	111.829	-0.003
	10000ps	-552845.658	104.093	-0.003
	50000ps	-552851.732	72.174	-0.002
Potential energy	0ps	-673548.262	416.462	-0.003
(kcal/mol)	100ps	-673548.153	137.449	-0.003
	1000ps	-673547.412	111.276	-0.003
	10000ps	-673541.869	105.255	-0.003
	50000ps	-673548.225	74.052	-0.002
Temperature	0ps	298.746	0.841	0.000
(K)	100ps	298.744	0.145	0.000
	1000ps	298.744	0.044	0.000
	10000ps	298.743	0.016	0.000
	50000ps	298.745	0.009	0.000
Pressure (bar)	0ps	1.121	62.977	0.000
	100ps	1.116	6.844	0.000
	1000ps	1.127	2.148	0.000
	10000ps	1.041	0.845	-0.000
	50000ps	1.113	0.370	0.000
Volume (Å ³)	0ps	2004076.296	2077.442	-0.010
	100ps	2004076.806	566.144	-0.010
	1000ps	2004080.431	456.372	-0.010
	10000ps	2004094.839	438.579	-0.012
	50000ps	2004076.464	298.533	-0.008

Properties	Time	Average	Standard	Slope (ps ⁻¹)
	duration		deviation	
Total energy	0ps	-552862.922	491.736	-0.003
(kcal/mol)	100ps	-552862.841	147.724	-0.003
	1000ps	-552861.736	109.590	-0.003
	10000ps	-552855.143	97.376	-0.003
	50000ps	-552862.894	90.088	-0.003
Potential	0ps	-673542.711	413.991	-0.003
energy	100ps	-673542.623	134.380	-0.003
(kcal/mol)	1000ps	-673541.715	108.047	-0.003
	10000ps	-673535.021	97.891	-0.003
	50000ps	-673542.684	90.341	-0.003
Temperature	0ps	298.742	0.839	0.000
(K)	100ps	298.741	0.147	0.000
	1000ps	298.741	0.041	0.000
	10000ps	298.740	0.015	0.000
	50000ps	298.741	0.006	0.000
Pressure (bar)	0ps	0.927	62.715	0.000
	100ps	0.922	7.325	0.000
	1000ps	0.919	2.541	0.000
	10000ps	0.917	1.109	0.000
	50000ps	0.919	0.783	0.000
Volume (Å ³)	0ps	2003742.042	2031.195	-0.005
	100ps	2003741.933	480.800	-0.005
	1000ps	2003743.950	351.596	-0.005
	10000ps	2003744.956	288.420	-0.007
	50000ps	2003742.215	151.515	-0.004

Table S5. Thermodynamic properties of HupA-5UN1 complex observed during moleculardynamics simulation.

Table S6: RMSD values of free protein (5UN1) with that of the bound proteins.

S. No.	Ligand-Protein Complex ID	RMSD value (Å)
1	Co-crystal (MK-801)/ 5UN1	2.2654
2	HupA/5UN1	3.8548
3	NM14/5UN1	3.7380
4	NM16/5UN1	3.4747
5	NM20/5UN1	3.5872
6	NM22/5UN1	3.8196
7	NM28/5UN1	3.7960

Figure S8. Simulation Interactions Diagram (SID) of compound co-crystal (a), HupA (b),

NM28 (c), NM14 (d), NM16 (e), NM20(f) and NM22 (g) with NMDA receptor.