ELECTRONIC SUPPORTING INFORMATION

RSC Advances

Third generation ionic liquids with *N*-alkylated 1,4diazabicyclo[2.2.2]octane cation and pelargonate anion

Anna Turguła^a, Konrad Stęsik^a, Katarzyna Materna^a, Tomasz Klejdysz^b, Tadeusz Praczyk^b

and *Juliusz Pernak^a

^a Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4,

Poznan 60-965, Poland

^b Institute of Plant Protection – National Research Institute, ul. Władysława Węgorka 20,

Poznan 60-318, Poland

* Corresponding author : e-mail: juliusz.pernak@put.poznan.pl

Number of pages: 21

Number of tables: 2

Number of figures: 17

1. IDENTIFICATION OF COMPOUNDS

The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet.

Fig. A.1 ¹H NMR spectrum of 1-hexyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (1).

Fig. A.2 ¹³C NMR spectrum of 1-hexyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (1).

Fig. A.3 ¹HNMR spectrum of 1-decyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (4).

Fig. A.4 ¹³C NMR spectrum of 1-decyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (4).

Fig. A.5 ¹H NMR spectrum of 1-dodecyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (5).

Fig. A.6 ¹³C NMR spectrum of 1-dodecyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (5).

Fig. A.7 ¹H NMR spectrum of 1-hexadecyl -1-azonia-4-azabicyclo[2.2.2]octane pelargonate (7).

Fig. A.8 ¹³C NMR spectrum of 1-hexadecyl -1-azonia-4-azabicyclo[2.2.2]octane pelargonate (7).

Fig. A.9 ¹H NMR spectrum of 1-octadecyl -1-azonia-4-azabicyclo[2.2.2]octane pelargonate (8).

Fig. A.10 ¹³C NMR spectrum of 1-octadecyl -1-azonia-4-azabicyclo[2.2.2]octane pelargonate (8).

Fig. A.11 Comparison of the FT-IR spectra of pelargonic acid, 1-tetradecyl-1-azonia-4-azabicyclo[2.2.2]octane bromide and 1-tetradecyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (6).

IL	Short	Chamical formula	Molecular weight	Calcu	lated value	s [%]	Obtained values [%]					
	Short	Chemical Iorinula	[g mol ⁻¹]	С	Н	Ν	С	Н	Ν			
1	[D ₄][PEL]	$C_{19}H_{38}N_2O_2$	326.52	69.89	11.73	8.58	69.56	11.54	8.33			
2	[D ₆][PEL]	$C_{21}H_{42}N_2O_2$	354.57	71.14	11.94	7.90	71.02	12.15	7.76			
3	[D ₈][PEL]	$C_{23}H_{46}N_2O_2$	382.62	72.20	12.12	7.32	72.14	11.98	7.05			
4	[D ₁₀][PEL]	$C_{25}H_{50}N_2O_2$	410.68	73.12	12.27	6.82	73.33	12.01	7.11			
5	[D ₁₂][PEL]	$C_{27}H_{54}N_2O_2$	438.73	73.92	12.41	6.39	73.80	12.10	6.56			
6	[D ₁₄][PEL]	$C_{29}H_{58}N_2O_2$	466.78	74.62	12.52	6.00	74.98	12.37	6.04			
7	[D ₁₆][PEL]	$C_{31}H_{62}N_2O_2$	494.83	75.24	12.63	5.66	75.10	12.42	5.45			
8	[D ₁₈][PEL]	$C_{33}H_{66}N_2O_2$	522.89	75.80	12.72	5.36	75.99	12.44	5.23			

 Table A.1 Elemental analysis for 1-alkyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (1-8)

Fig. A.12 ESI-MS spectra of 1-butyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (1).

IL 1: HRMS (ESI-Q-TOF), (ES⁺) for $C_{10}H_{21}N_2^+$ [m/z] = 169.1699 (calculated), 169.1710 (found)

IL 1: HRMS (ESI-Q-TOF), (ES⁻) for $C_9H_{17}O_2^-$ [m/z] = 157.1234 (calculated), 157.1233 (found)

Fig. A.13 ESI-MS spectra of 1-octyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (3).

IL 3: HRMS (ESI-Q-TOF), (ES⁺) for $C_{14}H_{29}N_2^+$ [m/z] = 225.2325 (calculated), 225.2338 (found)

IL 3: HRMS (ESI-Q-TOF), (ES⁻) for $C_9H_{17}O_2^-$ [m/z] = 157.1234 (calculated), 157.1236 (found)

Fig. A.14 ESI-MS spectra of 1-dodecyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (5).

IL 5: HRMS (ESI-Q-TOF), (ES⁺) for $C_{18}H_{37}N_2^+$ [m/z] = 281.2951 (calculated), 281.2965 (found)

IL 5: HRMS (ESI-Q-TOF), (ES⁻) for $C_9H_{17}O_2^-$ [m/z] = 157.1234 (calculated), 157.1235 (found)

Fig. A.15 ESI-MS spectra of 1-tetradecyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (6).

IL 6: HRMS (ESI-Q-TOF), (ES⁺) for $C_{20}H_{41}N_2^+$ [m/z] = 309.3264 (calculated), 309.3274 (found)

IL 6: HRMS (ESI-Q-TOF), (ES⁻) for $C_9H_{17}O_2^-$ [m/z] = 157.1234 (calculated), 157.1235 (found)

Fig. A.16 ESI-MS spectra of 1-hexadecyl-1-azonia-4-azabicyclo[2.2.2]octane pelargonate (7).

IL 7: HRMS (ESI-Q-TOF), (ES⁺) for $C_{22}H_{45}N_2^+$ [m/z] = 337.3577 (calculated), 337.3585 (found)

IL 7: HRMS (ESI-Q-TOF), (ES⁻) for $C_9H_{17}O_2^-$ [m/z] = 157.1234 (calculated), 157.1231 (found)

2. FEEDING DETERRENT ACTIVITY

	Granary weevil						Confused flour beetle												Khapra beetle					
Compound	(Sitophilus granarius)					(Tribolium confusum)												(Trogoderma granarium)						
Compound	Adults						Adults					Larvae							Larvae					
	R		A		Т		R		Α		Т		R		A		Т		R		A		T	
[D4][PEL]	98.7	b	58.5	а	157.2	ab	-0.5	а	-18.8	а	-19.3	а	22.1	а	-33.1	а	-11.0	а	36.4	а	16.6	ab	53.0	a
[D6][PEL]	43.4	a	66.8	а	110.2	а	12.5	ab	-0.7	ab	11.8	ab	48.8	ab	-27.1	а	21.7	ab	44.6	ab	-0.1	а	44.5	а
[D8][PEL]	98.6	b	56.8	а	155.4	ab	39.2	abc	-18.6	а	20.6	abc	20.2	а	-1.4	а	18.8	ab	44.0	ab	43.5	bc	87.5	ab
[D10][PEL]	100.0	b	84.0	а	184.0	b	41.2	abc	9.7	bc	50.9	bcd	68.2	bc	-25.7	а	42.5	abc	80.9	ab	68.7	c	149.6	bc
[D12][PEL]	97.1	b	71.2	а	168.3	b	44.1	bc	5.1	abc	49.2	bc	22.1	а	-1.9	а	20.2	ab	85.0	ab	73.2	c	158.2	c
[D14][PEL]	100.0	b	79.0	a	179.0	b	32.6	abc	29.4	cd	62.0	cd	64.0	bc	-15.5	а	48.5	abc	94.4	b	80.8	c	175.2	c
[D16][PEL]	100.0	b	90.9	a	190.9	b	65.0	c	-3.0	ab	62.0	cd	90.1	c	-16.6	а	73.5	bc	81.5	ab	77.0	c	158.5	c
[D18][PEL]	100.0	b	79.7	а	179.7	b	61.0	c	37.4	d	98.4	d	95.9	c	14.6	а	110.5	c	82.1	ab	71.8	c	153.9	bc
LSD _{0.05}	25.5		34.5		48.5		39.6		23.8		43.5		33.8		51.3		70.7		49.5		36.9		60.6	
Azadirachtin ^a	100.0		74.3		174.3		100.0		85.0		185.0		100.0		88.4		188.4		100.0		94.2		194.2	

Table A.2 Feeding deterrent activities of the prepared ILs against tested insects

a - J. Pernak, K. Wasiński, T. Praczyk, J. Nawrot, A. Cieniecka-Rosłonkiewicz, F. Walkiewicz, K. Materna, Sweet ionic liquidscyclamates: Synthesis, properties, and application as feeding deterrents, *Sci. China: Chem.* 55 (2012) 1532–1541. https://doi.org/10.1007/s11426-012-4631-9

