Identification of Preferentially Exposed Crystal Facets by Xray Diffraction

Liping Zhang, Alexandre A. S. Gonçalves, and Mietek Jaroniec*

Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA

Material	Preferentially exposed facet(s)	Application	Ref.
Ag ₃ PO ₄ rhombic dodecahedron	{110}	Photocatalytic degradation of rhodamine B (RhB) and	1
Ag ₃ PO ₄ cube	{100}	methyl orange (MO)	
Bi ₂ MoO ₆ nanosheets	{001}	Photocatalytic removal of NO	2
BiOBr nanosheets	{001}	Photocatalytic synthesis of NH3 using N2	3
BiOCl nanosheets	{001} or {010}	Photocatalytic degradation of MO	4
BiOCl nanosheets	{001}	Photocatalytic RhB degradation	5
BiOIO ₃ nanoplates	$\{010\}$ and $\{100\}$	Photocatalytic CO ₂ reduction	6
BiVO ₄ sheet	(040)	Photocatalytic H ₂ O oxidation	7
BiVO ₄ nanoplates	(040)	Photocatalytic H ₂ O oxidation	8
BiVO ₄ photoanode	(001)	Photoelectrochemical H ₂ O oxidation	9
BiVO ₄ nanosheets	{010}	Photocatalytic H ₂ O oxidation	10
CeO ₂ nanocubes	{100}	Oxygen storage	11
Co ₃ O ₄ nanosheets	{112}	Catalytic oxidation of trace C ₂ H ₄	12
Mesoporous Co ₃ O ₄	{110}		
Co ₃ O ₄ dodecahedra	{111}	Photocatalytic CO ₂ reduction	13
Co ₃ O ₄ cube	(001)	Anode material for Li-ion batteries	14
Co ₃ O ₄ polyhedra	(001) and (111)		
Co ₃ O ₄ octahedra	(111)		
Fe ₂ O ₃ nanosheets	(110)	Lithium storage and photocatalytic H ₂ O oxidation	15
Fe ₂ PO ₅ decahedra	$\{010\}$ and $\{110\}$	Electrocatalytic H ₂ O oxidation	16
Fe ₂ PO ₅ octahedra	{110}		
CoP	(211)	Electrocatalytic O2 reduction in zinc-air batteries	17
Ni ₃ S ₂ nanosheets	$\{210\}$	Electrocatalyst for overall H2O splitting	18
Pt nanocubes	{100}	/	19
Pt nanotetrahedra	{111}		
Pt hollow nanocubes	{111}	Catalytic O ₂ reduction in fuel cells	20
Pt nanoplates	(111)	Electrocatalytic O ₂ reduction	21
TiO ₂ polyhedra	{001}	Photocatalytic decomposition of methylene blue	22
TiO ₂ nanosheets	(001)	Lithium storage for Li-ion batteries	23
TiO ₂ (anatase) nanobelts	(101)	Photocatalytic degradation of MO	24
TiO ₂ (anatase) decahedra	{001}	/	25
TiO ₂ (anatase) decahedra	{101}	Photocatalytic reduction of fluorogenic molecules	26
TiO ₂ (anatase) decahedra	$\{001\}$ or $\{101\}$	Photocatalytic conversion of CH_3OH into H_2	27

Table S1. Selected examples of crystalline materials with preferentially exposed facets and their applications

References

- 1 Y. Bi, S. Ouyang, N. Umezawa, J. Cao and J. Ye, J. Am. Chem. Soc., 2011, 133, 6490-6492.
- 2 S. Wang, X. Ding, X. Zhang, H. Pang, X. Hai, G. Zhan, W. Zhou, H. Song, L. Zhang, H. Chen and J. Ye, *Adv. Funct. Mater.*, 2017, **27**, 1703923.
- 3 X. Xue, R. Chen, H. Chen, Y. Hu, Q. Ding, Z. Liu, L. Ma, G. Zhu, W. Zhang, Q. Yu, J. Liu, J. Ma and Z. Jin, *Nano Lett.*, 2018, **18**, 7372-7377.

- 4 J. Jiang, K. Zhao, X. Xiao and L. Zhang, J. Am. Chem. Soc., 2012, 134, 4473-4476.
- 5 M. Guan, C. Xiao, J. Zhang, S. Fan, R. An, Q. Cheng, J. Xie, M. Zhou, B. Ye and Y. Xie, *Journal of the American Chemical Society*, 2013, **135**, 10411-10417.
- 6 F. Chen, H. Huang, L. Ye, T. Zhang, Y. Zhang, X. Han and T. Ma, *Adv. Funct. Mater.*, 2018, 28, 1804284.
- 7 D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma, G. Li and C. Li, *Chem. Eur. J.*, 2011, **17**, 1275-1282.
- 8 G. Xi and J. Ye, *Chemical Communications*, 2010, 46, 1893.
- 9 H. S. Han, S. Shin, D. H. Kim, I. J. Park, J. S. Kim, P.-S. Huang, J.-K. Lee, I. S. Cho and X. Zheng, *Energy Environ. Sci.*, 2018, **11**, 1299-1306.
- 10 C. Dong, S. Lu, S. Yao, R. Ge, Z. Wang, Z. Wang, P. An, Y. Liu, B. Yang and H. Zhang, ACS Catal., 2018, 8, 8649-8658.
- X. Hao, A. Yoko, C. Chen, K. Inoue, M. Saito, G. Seong, S. Takami, T. Adschiri and Y. Ikuhara, *Small*, 2018, 14, 1802915.
- 12 C. Y. Ma, Z. Mu, J. J. Li, Y. G. Jin, J. Cheng, G. Q. Lu, Z. P. Hao and S. Z. Qiao, *J. Am. Chem. Soc.*, 2010, **132**, 2608-2613.
- 13 L. Wang, J. Wan, Y. Zhao, N. Yang and D. Wang, J. Am. Chem. Soc., 2019, 141, 2238-2241.
- 14 X. Xiao, X. Liu, H. Zhao, D. Chen, F. Liu, J. Xiang, Z. Hu and Y. Li, *Adv. Mater.*, 2012, 24, 5762-5766.
- 15 J. Zhu, Z. Yin, D. Yang, T. Sun, H. Yu, H. E. Hoster, H. H. Hng, H. Zhang and Q. Yan, *Energy Environ. Sci.*, 2013, 6, 987-993.
- 16 Y. Wu, Y. Meng, J. Hou, S. Cao, Z. Gao, Z. Wu and L. Sun, *Adv. Funct. Mater.*, 2018, 28, 1801397.
- 17 H. Li, Q. Li, P. Wen, T. B. Williams, S. Adhikari, C. Dun, C. Lu, D. Itanze, L. Jiang, D. L. Carroll, G. L. Donati, P. M. Lundin, Y. Qiu and S. M. Geyer, *Adv. Mater.*, 2018, **30**, 1705796.
- 18 L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J. Am. Chem. Soc., 2015, 137, 14023-14026.
- 19 C.-Y. Chiu, Y. Li, L. Ruan, X. Ye, C. B. Murray and Y. Huang, *Nat. Chem.*, 2011, **3**, 393.
- 20 W. Wang, X. Li, T. He, Y. Liu and M. Jin, *Nano Lett.*, 2019, **19**, 1743-1748.
- 21 H. Liu, P. Zhong, K. Liu, L. Han, H. Zheng, Y. Yin and C. Gao, *Chem. Sci.*, 2018, 9, 398-404.
- 22 S. Liu, J. Yu and M. Jaroniec, J. Am. Chem. Soc., 2010, 132, 11914-11916.
- 23 J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer and X. W. Lou, J. Am. Chem. Soc., 2010, 132, 6124-6130.
- 24 N. Wu, J. Wang, D. N. Tafen, H. Wang, J.-G. Zheng, J. P. Lewis, X. Liu, S. S. Leonard and A. Manivannan, *J. Am. Chem. Soc.*, 2010, **132**, 6679-6685.
- 25 H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, *Nature*, 2008, **453**, 638-641.
- 26 T. Tachikawa, S. Yamashita and T. Majima, J. Am. Chem. Soc., 2011, 133, 7197-7204.
- 27 T. R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R. T. Weber, P. Fornasiero and C. B. Murray, J. Am. Chem. Soc., 2012, **134**, 6751-6761.

Fig. S1 EDX spectra recorded at two different areas of the synthesized (a) BiOI, (b) BiOBr, and (c) BiOCl samples. The peaks of Cu are attributable to the use of Cu grids.

Fig. S2 XRD patterns of the synthesized BiOX samples.

Fig. S3 Crystal structures of (a) BiOX, (b)-(d) BiOX doped with foreign ions, and (e-g) BiOX with vacancies.

Fig. S4 Simulated XRD patterns of BiOI doped with various elements.

Fig. S5 Simulated XRD patterns of BiOI with various amounts of (a) O and (b) Bi vacancies.

Fig. S6 Simulated (1-3) and experimental (4) XRD patterns of BiOBr. Pattern 1, bulk BiOBr without preferred orientation or anisotropic broadening; pattern 2, preferred orientation in [001] (March/Dollase parameter = 0.828); pattern 3, (110) broadening (anisotropic parameter = 1.5).

Fig. S7 (a, c, e) TEM images of BiOI nanoplates and (b, d, f) the corresponding fast Fourier transforms (FFTs). The insert of (e) is the magnified image of the red frame-enclosed area.

Fig. S8 (a) TEM image of BiOCl, (b) magnified image of the red frame-enclosed area, (c) and (d) FFTs of the green-colored frames 1 and 2, respectively, in (a).