Supporting Information

One-pot multicomponent synthesis of thieno[2,3-*b*]indoles catalyzed by a magnetic nanoparticle-supported [Urea]₄[ZnCl₂] deep eutectic solvent.

The Thai Nguyen^{a,b}, Phuong Hoang Tran^{a,b}*

^a Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi

Minh City 721337, Vietnam.

^b Vietnam National University, Ho Chi Minh City 721337, Vietnam.

* E-mail: thphuong@hcmus.edu.vn

Table of Contents

Section S1	Materials, equiments and analytical methods	S2-
S3		
Section S2	Characterization of the catalyst	S4-S9
Section S3	Optimization of the reaction conditions on the synthesis of 2-phenyl-8/	<i>I</i> -
	thieno[2,3- <i>b</i>]indole	. S9-S 11
Section S4	The experiment for proposed mechanism	S12
Section S5	Spectral data	S13-
S23		
Section S6	Copies of ¹ H, ¹³ C NMR and HRMS spectra of all productsS	24-855

Section S1. Materials, equipment and analytical methods

Materials

Sulfur (purity \geq 99.5%), indole (purity \geq 99%), 5-methylindole (purity \geq 99%), 5methoxyindole (purity \geq 99%), 5-fluoroindole (purity \geq 98%), 5-chloroindole (purity \geq 98%), 5-bromoindole (purity \geq 99%), 5-nitroindole (purity \geq 99%), acetophenone (purity \geq 98%), 4methylacetophenone (purity \geq 95%), 4-methoxyacetophenone (purity \geq 98%), 4fluoroacetophenone (purity \geq 99%), 4-nitroacetophenone (purity \geq 98%), 2-acetylthiophene (purity \geq 98%), (3-chloropropyl)trimethoxysilane (purity \geq 95%), choline chloride (purity \geq 99%), urea (purity \geq 98%), trifluoroacetic acid (purity \geq 99%), aluminum chloride (anhydrous, purity \geq 99%), zinc chloride (anhydrous, purity \geq 97%), iron(III) chloride (anhydrous, purity \ge 99%), tin(IV) chloride (anhydrous, purity \ge 98%), copper(II) chloride (anhydrous, purity \geq 98%), potassium hydroxide (purity > 85%), were purchased from Sigma-Aldrich. Tetraethyl orthosilicate (purity > 98%), acetic acid (purity > 98%), phosphoric acid (purity $\ge 85\%$), sulfuric acid (purity $\ge 97.5\%$), and silica gel 230–400 mesh for flash chromatography, TLC plates (silica gel 60 F254), 1,4-dioxane (anhydrous, purity \geq 99.9%), ethanol (anhydrous, purity \geq 99%), acetonitrile (anhydrous, purity \geq 99.8%), toluene (anhydrous, purity \geq 99%), dichloromethane (anhydrous, 99%), *n*-butanol (anhydrous, purity \geq 99.8%), *tert*-butanol (anhydrous, purity \geq 99.5%), tetrahydrofuran (anhydrous, purity \geq 99.5%), ethyl acetate (anhydrous, purity \geq 99%), N,N-dimethylformamide (anhydrous, purity > 99%), p-xylene (anhydrous, purity \geq 99%) acetone and n-hexane (anhydrous, purity \geq 99.5%) were obtained from Merck. Deuterated solvents, DMSO- d_6 and acetone- d_6 , were purchased from Cambridge Isotope Laboratories (Andover, MA). All chemicals were used without further purification.

Equipment and analytical methods

The chemicals were measured on Ohaus 80251621 explorer precision balance. The reactions were conducted on an IKA C-MAG HS7 magnetic stirrer or Elma S30H Ultrasonic cleaning unit (ultrasonic frequency = 37 kHz). Analytical thin-layer chromatography (TLC) was performed on F-254 silica gel coated aluminum plates from Merck. Column chromatography was performed on silica gel 60, 0.04–0.06 mm (230–400 mesh). Melting points were recorded with a Buchi B-545 melting point Apparatus and are uncorrected.

Powder X-ray diffraction (PXRD) patterns were recorded using a D8 Advance diffractometer equipped with a LYNXEYE detector (Bragg-Brentano geometry, CuK_{α} radiation $\lambda = 1.54056$ Å). Thermal gravimetric analysis (TGA) was performed using a TA

instruments Q-500 thermal gravimetric analyzer under airflow with temperature ramp of 5 °C.min⁻¹. Fourier transform infrared (FT-IR) spectra were measured on a Bruker E400 FT-IR spectrometer using potassium bromide pellets. Scanning electron microscope (SEM) images were taken on a Hitachi S-4800 scanning electron microscope operating at an accelerating voltage of 1 kV. Transmission electron microscope (TEM) images were taken on a Jem-Arm 300F grand atomic resolution electron microscope accelerating voltage of 300 kV. Energydispersive X-ray spectroscopy (EDX) analysis was performed using an EMAX energy EX-400 EDX device. Vibrating sample magnetometer (VSM) analysis was recorded on Model 10 Mark II VSM. Nuclear magnetic resonance (¹H and ¹³C NMR) spectra were acquired on a Bruker advance II 500 MHz NMR spectrometer. Chemical shifts were quoted in parts per million (ppm) and referenced to the appropriate solvent peak. High-resolution mass spectrometry (HRMS) was conducted in negative ionization mode on an Agilent 1200 series high-performance liquid chromatography coupled to a Bruker micrOTOF-QII EIS mass spectrometer detector. Gas chromatography-mass spectrometry (GC-MS) measurements were carried out on an Agilent GC System 7890 equipped with a mass selective detector (Agilent 5973N) and a capillary DB-5MS column (30 m \times 250 μ m \times 0.25 μ m). Inductively coupled plasma mass spectroscopy (ICP-MS) data were recorded on a PerkinElmer 350X. Raman spectra were recorded on a Horiba Xplora One using a 532 nm argon ion laser.

Scheme S1. The preparation of DES@MNP catalyst

Figure S1. FT-IR spectrum of Fe₃O₄, SiO₂@Fe₃O₄, Cl-(CH₂)₃@SiO₂@Fe₃O₄, [Urea]₄[ZnCl₂] and DES@MNP

Figure S4. Magnetic curves of Fe₃O₄ and DES@MNP

Figure S5. X-Ray diffraction pattern of DES@MNP

(a)

(b)

Figure S6. SEM (a) and TEM (b) images of DES@MNP

Figure S7. EDX spectrum of fresh catalyst and reused catalyst.

Figure S8. FT-IR spectra for the comparison of the fresh catalyst and the fifth-times reused catalyst.

Section S3. Optimization of the reaction conditions on the synthesis of 2-phenyl-8*H*-thieno[2,3-*b*]indole

Entry ^a	Additives (1 equivment)	Yield ^b (%)
1	N,N-Dimethylformamide	87
2	Acetamide	43
3	Pyrrolidine	38
4	Piperidine	54
5	Triethylamine	44
6	Aniline	19
7	N,N-Dimethylaniline	26
8	1,4-Diazabicyclo[2.2.2]octane	75
9	4-Ethylmorpholine	81

Table S1. Effects of the additive on the synthesis of 2-phenyl-8*H*-thieno[2,3-*b*]indole

^{*a*}Reaction conditions: acetophenone (2.0 mmol, 240 mg), indole (1.0 mmol, 117 mg), sulfur (5.0 mmol, 160 mg), additive (1.0 mmol) and DES@MNP catalyst (10 mol%, 30 mg) were heated at 140 °C for 12 h.

^bYield of 2-phenyl-8*H*-thieno[2,3-*b*]indole was isolated yield by column chromatography (dichloromethane/petroleum ether 2:3).

Entry ^a	Type of Solvent	Solvent	Yield ^b (%)	
1		Ethanol	Trace	
2	Polar protic	tert-Butanol	17	
3		<i>n</i> -Butanol	21	
4		Ethyl acetate	25	
5		Acetonitrile	70	
6	Polar aprolic	Tetrahydrofurane	32	
7		N,N-Dimethylformamide	87	
8		1,4-Dioxane	78	
9	Non nolon	Toluene	35	
10	Non pola	<i>p</i> -Xylene	23	
11		<i>n</i> -Hexane	Trace	

 Table S2. Effects of solvents on the synthesis of 2-phenyl-8H-thieno[2,3-b]indole

^{*a*}Reaction conditions: acetophenone (2.0 mmol, 240 mg), indole (1.0 mmol, 117 mg), sulfur (5.0 mmol, 160 mg), DMF (0.3 mL) and DES@MNP catalyst (10 mol%, 30 mg) were heated in 1.5 mL solvent at 140 °C for 12 h. ^{*b*}Yield of 2-phenyl-8*H*-thieno[2,3-*b*]indole was isolated yield by column chromatography (dichloromethane/ petroleum ether 2:3).

Table S3. Effects of temperature on the synthesis of 2-phenyl-8*H*-thieno[2,3-*b*]indole

Entry ^a	Temperature (°C)	Yield ^b (%)
1	80	Trace
2	100	17
3	120	45
4	130	68
5	140	87
6	150	87

^{*a*}Reaction conditions: acetophenone (2.0 mmol, 240 mg), indole (1.0 mmol, 117 mg), sulfur (5.0 mmol, 160 mg), and DES@MNP catalyst (10 mol%, 30 mg) were heated in 1.5 mL DMF for 12 h. ^{*b*}Yield of 2-phenyl-8*H*-thieno[2,3-*b*]indole was isolated yield by column chromatography (dichloromethane/ petroleum ether 2:3).

Entry ^a	Time (h)	Yield ^b (%)
1	2	Trace
2	4	14
3	6	37
4	8	59
5	10	78
6	12	87
7	14	88

Table S4. Effects of time on the synthesis of 2-phenyl-8*H*-thieno[2,3-*b*]indole

^{*a*}Reaction conditions: acetophenone (2.0 mmol, 240 mg), indole (1.0 mmol, 117 mg), sulfur (5.0 mmol, 160 mg), and DES@MNP catalyst (10 mol%, 30 mg) were heated in 1.5 mL DMF at 140 °C. ^{*b*}Yield of 2-phenyl-8*H*-thieno[2,3-*b*]indole was isolated by column chromatography (dichloromethane/ petroleum ether 2:3).

Table S5.	Effects of	reactant	ratio on	the sy	nthesis	of 2-1	pheny	y l-8 <i>H</i> -	-thieno	[2 , 3 - <i>b</i>]	lindol	le

Entry ^a	Molar ratio	Yield ^b (%)			
	Indole:acetophenone:sulfur				
1	1.0:1.0:1.0	Trace			
2	1.0:1.5:1.0	25			
3	1.0:2.0:1.0	31			
4	1.0:2.0:1.5	34			
5	1.0:2.0:2.0	37			
6	1.0:2.0:3.0	57			
7	1.0:2.0:4.0	76			

^{*a*}Reaction conditions: acetophenone, indole, sulfur, and DES@MNP catalyst (10 mol%, 30 mg) were heated in 1.5 mL DMF at 140 °C for 12 h.

^{*b*}Yield of 2-phenyl-8*H*-thieno[2,3-*b*]indole was isolated yield by column chromatography (dichloromethane/ petroleum ether 2:3).

Section S4. The experiment for proposed mechanism

Scheme S2. Control experiments for mechanism investigation.

Section S5. Spectral data

2-Phenyl-8*H*-thieno[2,3-*b*]indole (3a)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.40$; yellowish solid, mp. 243–245 °C.

FT-IR (KBr, 4000-400 cm⁻¹): 3395, 3050, 1522, 1469, 1437, 1252, 830, 740, 687 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.69$ (s, 1H), 7.87 (s, 1H), 7.80 (d, J = 8.0 Hz, 1H),

7.66 (dt, J = 8.0, 1.5 Hz, 2H), 7.47 (d, J = 8.0 Hz, 1H), 7.43–7.39 (m, 2H), 7.26–7.23 (m,

1H), 7.20 (ddd, *J* = 8.5, 7.5, 1.0 Hz, 1H), 7.12 (dd, *J* = 7.5, 1.0 Hz, 1H).

¹³C NMR (125 MHz, DMSO- d_6): δ = 142.0, 141.1, 135.7, 135.2, 134.2, 129.6, 127.1, 125.0,

122.5, 122.1, 119.71, 119.3, 114.8, 112.2.

GC-MS (EI, 70 eV) *m/z* 249 [M]⁺.

2-(*p*-Tolyl)-8*H*-thieno[2,3-*b*]indole (3b)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.35$; white solid, mp. 223 °C.

FT-IR (KBr, 4000-400 cm⁻¹): 3431, 3028, 2955, 1647, 1026, 828, 768 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.66$ (s, 1H), 7.80 (s, 1H), 7.78 (d, J = 8.0 Hz, 1H),

7.55 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 7.5 Hz, 1H), 7.19 (ddd, *J* = 8.0,

7.0, 1.0 Hz, 1H), 7.13–7.08 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 2.32 (s, 3H).

¹³C NMR (125 MHz, DMSO- d_6): δ = 141.5, 140.3, 135.9, 134.9, 132.5, 129.7, 124.5, 124.4,

121.9, 121.6, 119.2, 118.8, 113.6, 111.7, 20.7.

HRMS (ESI) *m/z*: [M]⁺ calcd for C₁₇H₁₃NS 263.0769, found 263.0724.

2-(4-Methoxyphenyl)-8*H*-thieno[2,3-*b*]indole (3c)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.45$; white solid, mp. 220 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3391, 3051, 2957, 2918, 1529, 1480, 1431, 1290, 1255, 821, 742, 508 cm⁻¹.

¹H NMR (500 MHz, acetone- d_6): $\delta = 10.69$ (s, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.64 (s, 1H), 7.60 (d, J = 9.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 1H), 7.20 (td, J = 8.0, 1.0 Hz, 1H), 7.12 (td, J = 7.5, 1.0 Hz, 1H), 6.98 (d, J = 9.0 Hz, 2H), 3.83 (s, 3H).

¹³C NMR (125 MHz, acetone-*d*₆): δ = 159.8, 142.8, 141.2, 136.7, 129.4, 127.1, 126.2, 123.2, 122.8, 120.3, 119.7, 115.3, 113.5, 112.5, 55.7.

GC-MS (EI, 70 eV) *m/z* 279 [M]⁺.

2-(4-Fluorophenyl)-8H-thieno[2,3-b]indole (3d)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.32$; yellowish solid, mp. 251–252 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3383, 3051, 1527, 1476, 1427, 1236, 828, 811, 1126, 743, 674, 496 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.68$ (s, 1H), 7.83 (s, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.71–7.68 (m, 2H), 7.47 (d, J = 8.0 Hz, 1H), 7.28–7.23 (m, 2H), 7.20 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.11 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 161.5 (d, *J* = 242.2 Hz), 141.9 (s), 141.1 (s), 134.0 (s), 132.3 (d, *J* = 0.7 Hz), 126.9 (d, *J* = 7.9 Hz), 124.9 (s), 122.5 (s), 122.0 (s), 119.7 (s), 119.3 (s), 116.4 (d, *J* = 2.74 Hz), 114.9 (s), 112.2 (s).

HRMS (ESI) *m/z*: [M–H]⁺ calcd for C₁₆H₉NFS 266.0440, found 266.0445.

2-(4-Nitrophenyl)-8*H*-thieno[2,3-*b*]indole (3e)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.35$; orange solid, mp. 257 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3433, 2256, 2129, 1646, 1026, 1000, 827, 765.

¹H NMR (500 MHz, DMSO- d_6) δ 11.88 (s, 1H), 8.24 (d, J = 9.0 Hz, 2H), 8.23 (s, 1H), 7.90 (d, J = 9.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.27–7.22 (m, 1H), 7.18–7.14 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 142.2, 142.0, 141.7, 141.5, 138.4, 126.3, 125.1, 124.7,

124.7, 122.9, 119.9, 119.3, 118.5, 112.1.

GC-MS (EI, 70 eV) *m/z*: 294 ([M]⁺).

2-(Thiophen-2-yl)-8H-thieno[2,3-b]indole (3f)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.30$; organe solid, mp. 178 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3408, 1635, 1475, 1429, 1410, 1384, 812, 742, 684 cm⁻¹. ¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.68$ (s, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.63 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.43 (dd, J = 5.0, 1.0 Hz, 1H), 7.23 (dd, J = 3.5, 1.0 Hz, 1H), 7.20 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.10 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.07 (dd, J = 5.0, 3.5 Hz, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 141.5, 140.1, 138.2, 128.1, 127.9, 124.0, 122.4, 122.4, 121.4, 119.3, 118.9, 117.9, 114.7, 111.8.

HRMS (ESI) m/z: [M]⁺ calcd for C₁₄H₉NS₂ 255.0176, found 255.0171.

5-Methyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (3g)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.35$; white solid, mp. 220–221 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3378, 3027, 2920, 2852, 1524, 1478, 1443, 1254, 831, 753, 688, 588 cm⁻¹.

¹H NMR (500 MHz, DMSO-*d*₆): δ = 11.55 (s, 1H), 7.82 (s, 1H), 7.66–7.64 (m, 2H), 7.58 (s, 1H), 7.42–7.39 (m, 2H), 7.35 (d, *J* = 8.5 Hz, 1H), 7.26–7.22 (m, 1H), 7.02 (ddd, *J* = 8.0, 1.5, 0.5 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 140.7, 139.8, 135.3, 134.3, 129.1, 127.8, 126.5, 124.5, 124.2, 123.3, 121.7, 118.7, 114.2, 111.4, 21.1.

HRMS (ESI) *m/z*: [M]⁺ calcd for C₁₇H₁₃NS 263.0769, found 263.0722.

5-Methyl-2-(p-tolyl)-8H-thieno[2,3-b]indole (3h)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.40$; white solid, mp. 245 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3370, 3017, 2916, 2853, 1530, 1480, 1425, 1256, 808, 752, 588, 487 cm⁻¹.

¹H NMR (500 MHz, DMSO-*d*₆): δ = 11.53 (s, 1H), 7.75 (s, 1H), 7.56 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 1H), 2.42 (s, 3H), 2.31 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 140.3, 139.8, 135.8, 134.6, 132.5, 129.6, 127.7, 124.4, 124.1, 123.2, 121.7, 118.6, 113.5, 111.3, 21.2, 20.7.

HRMS (ESI) *m/z*: [M]⁺ calcd for C₁₈H₁₅NS 277.0925, found 277.0918.

2-(4-Methoxyphenyl)-5-methyl-8*H*-thieno[2,3-*b*]indole (3i)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.40$; white solid, mp. 241 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3414, 3025, 2922, 1637, 1529, 1384, 1294, 1255, 821, 509 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): δ = 11.49 (s, 1H), 7.65 (s, 1H), 7.57 (m, 3H), 7.34 (d, J =

8.5 Hz, 1H), 7.00 (m, 3H), 3.78 (s, 3H), 2.42 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 158.7, 140.5, 140.2, 135.0, 128.5, 128.2, 126.4, 124.6,

123.6, 122.2, 119.1, 115.0, 113.3, 111.8, 55.7, 21.7.

HRMS (ESI) *m/z*: [M]⁺ calcd for C₁₈H₁₅NOS 293.0874, found 293.0867.

2-(4-Fluorophenyl)-5-methyl-8*H*-thieno[2,3-*b*]indole (3j)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.50$; white solid, mp. 231 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3372, 3029, 2922, 2853, 1639, 1529, 1478, 1233, 824, 810, 532 cm⁻¹.

¹H NMR (500 MHz, DMSO-*d*₆): δ = 11.56 (s, 1H), 7.78 (s, 1H), 7.69–7.66 (m, 2H), 7.57 (s, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.24 (t, *J* = 8.5 Hz, 2H), 7.02 (dd, *J* = 8.5, 1.0 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 161.0 (d, *J* = 242.4 Hz), 140.7 (s), 139.8 (s), 133.2 (s), 131.9 (d, *J* = 3.1 Hz), 127.8 (s), 126.4 (d, *J* = 7.9 Hz), 124.2 (s), 123.4 (s), 121.7 (s), 118.7 (s), 115.9 (d, *J* = 21.6 Hz), 114.4 (s), 111.4 (s), 21.1 (s).

HRMS (ESI) *m/z*: [M]⁺ calcd for C₁₇H₁₂FNS 281.0674, found 281.0662.

5-Methoxy-2-phenyl-8*H*-thieno[2,3-*b*]indole (3k)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.37$; white solid, mp. 210 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3410, 3057, 2990, 2831, 1525, 1480, 1428, 1266, 1215, 828, 753, 690, 475 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.52$ (s, 1H), 7.84 (s, 1H), 7.64 (d, J = 7.0 Hz, 2H),

7.40 (t, *J* = 7.5 Hz, 2H), 7.37 (d, *J* = 9.0 Hz, 1H), 7.35 (d, *J* = 2.0 Hz, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 6.84 (dd, *J* = 9.0, 2.5 Hz, 1H), 3.81 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 153.5, 141.2, 136.4, 135.3, 134.2, 129.1, 126.5, 124.4, 122.0, 114.3, 112.3, 111.2, 101.8, 55.4.

HRMS (ESI) *m/z*: [M]⁺ calcd for C₁₇H₁₃NOS 279.0718, found 279.0709.

5-Methoxy-2-(p-tolyl)-8H-thieno[2,3-b]indole (3l)

Analy-tical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.45$; white solid, mp. 201 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3398, 3048, 2995, 2945, 1531, 1478, 1423, 1212, 833, 808, 751, 673 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.48$ (s, 1H), 7.76 (s, 1H), 7.53 (d, J = 8.0 Hz, 2H),

7.35 (d, *J* = 8.5 Hz, 1H), 7.33 (d, *J* = 2.0 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 6.82 (dd, *J* = 8.5,

2.0 Hz, 1H), 3.81 (s, 3H), 2.31 (s, 3H).

¹³C NMR (125 MHz, DMSO- d_6): $\delta = 153.4$, 140.8, 136.4, 135.8, 134.4, 132.5, 129.6, 124.4,

124.4, 122.0, 113.6, 112.3, 111.0, 101.7, 55.4, 20.7.

HRMS (ESI) *m/z*: [M]⁺ calcd for C₁₈H₁₅NOS 293.0874, found 293.0864.

5-Methoxy-2-(4-methoxyphenyl)-8*H*-thieno[2,3-*b*]indole (3m)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.50$; white solid, mp. 231 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3398, 3051, 2295, 2248, 1530, 1478, 1455, 1265, 1213, 1170, 1113, 1085, 833, 808, 751, 673 cm⁻¹.

¹H NMR (500 MHz, acetone- d_6): $\delta = 10.63$ (s, 1H), 7.60 (s, 1H), 7.58 (d, J = 9.0 Hz, 2H), 7.38 (d, J = 9.0 Hz, 1H), 7.36 (d, J = 2.0 Hz, 1H), 6.97 (d, J = 9.0 Hz, 2H), 6.84 (dd, J = 9.0,

2.0 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H).

¹³C NMR (125 MHz, acetone- d_6): $\delta = 159.8$, 155.2, 141.9, 137.9, 136.2, 129.5, 127.1, 126.1, 123.6, 115.4, 113.5, 113.1, 113.0, 112.2, 102.7, 56.1, 55.7.

GC-MS (EI, 70 eV) *m/z* 309 [M]⁺.

5-Methoxy-2-(4-fluorophenyl)-8*H*-thieno[2,3-*b*]indole (3n)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.47$; white solid, mp. 200–201 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3433, 3021, 2923, 1626, 1530, 1479, 1423, 1218, 1168, 1025, 825 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): δ = 11.51 (s, 1H), 7.79 (s, 1H), 7.67 (dd, J = 9.0, 5.0 Hz, 2H), 7.37 (d, J = 8.5 Hz, 1H), 7.34 (d, J = 2.5 Hz, 1H), 7.24 (m, 2H), 6.84 (dd, J = 8.5, 2.5 Hz, 1H), 3.81 (s, 3H).

¹³C NMR (125 MHz, DMSO- d_6): $\delta = 161.0$ (d, J = 242.4 Hz), 153.5 (s), 141.1 (s), 136.4 (s), 132.98 (s), 131.9 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 124.4 (s), 121.9 (s), 116.0 (d, J = 3.1 Hz), 126.35 (d, J = 7.9 Hz), 126.

21.6 Hz), 114.4 (s), 112.3 (s), 111.2 (s), 101.7 (s), 55.4 (s).

HRMS (ESI) *m/z* calcd for [M]⁺ C₁₇H₁₂FNOS 297.0624, found 297.0618.

5-Fluoro-2-phenyl-8*H*-thieno[2,3-*b*]indole (30)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.54$; yellowish solid, mp. 255 °C. FT-IR (KBr, 4000–400 cm⁻¹): 3408, 3065, 1524, 1480, 1441, 1169, 1256, 1170, 1077, 830, 807, 739, 687 cm⁻¹. ¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.77$ (s, 1H), 7.84 (s, 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.58 (dd, J = 9.5, 2.5 Hz, 1H), 7.47 (dd, J = 9.0, 4.5 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.26 (t, J = 7.5 Hz, 1H), 7.04 (td, J = 9.0, 2.5 Hz, 1H).

¹³C NMR (125 MHz, DMSO- d_6): $\delta = 156.8$ (d, J = 231.0 Hz), 142.3 (s), 138.0 (s), 135.0 (d, J = 18.8 Hz), 129.1 (s), 126.7 (s), 124.6 (s), 124.3 (d, J = 4.0 Hz), 121.69 (d, J = 10.5 Hz), 114.19 (s), 112.5 (d, J = 9.6 Hz), 109.6 (d, J = 25.5 Hz), 104.2 (d, J = 24.0 Hz).

HRMS (ESI) *m/z* calcd for [M]⁺ C₁₆H₁₀FNS 267.0518, found 267.0514.

5-Fluoro-2-(*p*-tolyl)-8*H*-thieno[2,3-*b*]indole (3p)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.47$; yellowish solid, mp. 264.5–265.5 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3391, 3047, 2919, 2852, 1530, 1482, 1427, 1257, 1170, 810, 756, 593 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.74$ (s, 1H), 7.77 (s, 1H), 7.57 (dd, J = 9.5, 2.5 Hz, 1H), 7.53 (d, J = 8.0 Hz, 2H), 7.46 (dd, J = 8.5, 4.5 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.03 (td, J = 9.0, 2.5 Hz, 1H), 2.32 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 156.8 (d, *J* = 231.0 Hz), 142.0 (s), 138.0 (s), 136.1 (s), 135.1 (s), 132.3 (s), 129.6 (s), 124.5 (s), 124.3 (d, *J* = 4.1 Hz), 121.7 (d, *J* = 10.4 Hz), 113.5 (s), 112.5 (d, *J* = 9.6 Hz), 109.5 (d, *J* = 25.5 Hz), 104.1 (d, *J* = 23.9 Hz), 20.65 (s).

HRMS (ESI) m/z calcd for [M]⁺ C₁₇H₁₂FNS 281.0674, found 281.0666.

5-Chloro-2-phenyl-8*H*-thieno[2,3-*b*]indole (3q)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.50$; yellowish solid, mp. 216 °C. FT-IR (KBr, 4000–400 cm⁻¹): 3387, 3075, 2922, 1519, 1477, 1433, 1244, 827, 792, 758, 689, 580 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ = 11.88 (s, 1H), 7.87 (s, 2H), 7.65 (d, *J* = 7.5 Hz, 2H), 7.50 (d, *J* = 8.5 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.27 (t, *J* = 7.5 Hz, 1H), 7.20 (dd, *J* = 8.5, 2.0 Hz, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 142.0, 139.8, 135.3, 1345.0, 129.1, 126.8, 124.6, 123.9, 123.7, 122.5, 121.7, 118.3, 114.2, 113.1.

HRMS (ESI) *m/z* calcd for [M]⁺ C₁₆H₁₀ClNS 283.0222, found 283.0176.

5-Chloro-2-(*p*-tolyl)-8*H*-thieno[2,3-*b*]indole (3r)

Analyti-cal TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.45$; yellowish solid, mp. 230 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3381, 3012, 2918, 2852, 1527, 1477, 1424, 1280, 1050, 811, 793, 698, 580, 488 cm⁻¹.

¹H NMR (500 MHz, DMSO-*d*₆): δ = 11.85 (s, 1H), 7.85 (d, *J* = 2.0 Hz, 1H), 7.79 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.19 (dd, *J* = 8.5, 2.0 Hz, 1H), 2.31 (s, 3H).

¹³C NMR (125 MHz, DMSO- d_6): $\delta = 141.6$, 139.8, 136.2, 135.6, 132.2, 129.7, 124.6, 123.8,

123.6, 122.5, 121.6, 118.2, 113.5, 113.1, 20.7.

HRMS (ESI) m/z calcd for [M]⁺ C₁₇H₁₂ClNS 297.0379, found 297.0364.

5-Chloro-2-(4-methoxyphenyl)-8*H*-thieno[2,3-*b*]indole (3s)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.45$; yellowish solid, mp. 213–214 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3392, 3070, 2961, 2836, 1605, 1528, 1460, 1427, 1255, 1179, 1030, 917, 872, 820 cm⁻¹.

¹H NMR (500 MHz, acetone-*d*₆): δ = 11.55 (s, 1H), 7.82 (d, *J* = 2.0 Hz, 1H), 7.65 (s, 1H), 7.59 (d, *J* = 9.0 Hz, 2H), 7.50 (d, *J* = 9.0 Hz, 1H), 7.18 (dd, *J* = 9.0, 2.0 Hz, 1H), 6.99 (d, *J* = 9.0 Hz, 2H), 3.82 (s, 3H).

¹³C NMR (125 MHz, acetone- d_6): $\delta = 159.7$, 142.6, 141.0, 136.9, 129.0, 127.0, 125.1, 125.0, 123.8, 122.4, 119.0, 115.2, 113.6, 113.3, 55.6.

HRMS (ESI) *m/z* calcd for [M]⁺ C₁₇H₁₂ClNOS 313.0328, found 313.0320.

5-Chloro-2-(4-fluorophenyl)-8*H*-thieno[2,3-*b*]indole (3t)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.55$; yellowish solid, mp. 176 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3404, 3019, 2922, 2852, 1640, 1528, 1478, 1423, 1240, 1105, 1054, 816, 500 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.87$ (s, 1H), 7.85 (d, J = 2.0 Hz, 1H), 7.81 (s, 1H),

7.70–7.64 (m, 2H), 7.50 (d, *J* = 8.5 Hz, 1H), 7.26 (m, 2H), 7.20 (dd, *J* = 8.5, 2.0 Hz, 1H).

¹³C NMR (125 MHz, DMSO- d_6): $\delta = 161.1$ (d, J = 242.8 Hz), 142.0 (s), 139.8 (s), 134.2 (s), 131.6 (d, J = 3.2 Hz), 126.60 (d, J = 8.0 Hz), 123.78 (d, J = 15.6 Hz), 122.5 (s), 121.8 (s), 118.3 (s), 116.1 (s), 116.0 (s), 114.4 (s), 113.2 (s).

HRMS (ESI) *m/z* calcd for [M]⁺ C₁₆H₉ClFNS 301.0128, found 301.0087.

5-Bromo-2-phenyl-8*H*-thieno[2,3-*b*]indole (3u)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.50$; yellowish solid, mp. 219–220 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3387, 3074, 1517, 1475, 1430, 1282, 1243, 827, 790, 757, 689, 588, 475 cm⁻¹.

¹H NMR (500 MHz, DMSO-*d*₆): δ = 11.89 (s, 1H), 8.01 (d, *J* = 2.0 Hz, 1H), 7.87 (s, 1H), 7.65 (d, *J* = 7.5 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 1H), 7.42 (t, *J* = 7.5, 1H), 7.31 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.27 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 142.3, 140.6, 135.9, 135.5, 129.6, 127.3, 125.1, 124.8, 124.2, 123.7, 121.7, 114.7, 114.1, 112.1.

HRMS (ESI) *m*/*z* calcd for [M]⁺ C₁₆H₁₀BrNS 326.9717, found 326.9669.

5-Bromo-2-(*p*-tolyl)-8*H*-thieno[2,3-*b*]indole (3v)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.52$; golden solid, mp. 209 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3381, 3011, 2918, 2851, 1526, 1477, 1423, 1281, 811, 791, 688, 574, 446 cm⁻¹.

¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 11.86$ (s, 1H), 7.99 (d, J = 1.5 Hz, 1H), 7.79 (s, 1H), 7.53 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 9.0 Hz, 1H), 7.30 (dd, J = 9.0, 1.5 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 2.32 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 141.5, 140.0, 136.2, 135.6, 132.2, 129.7, 124.6, 124.2, 123.7, 123.2, 121.2, 113.6, 113.5, 111.5, 20.7.

HRMS (ESI) *m/z* calcd for [M]⁺ C₁₇H₁₂BrNS 340.9874, found 340.9827.

5-Bromo-2-(4-methoxyphenyl)-8*H*-thieno[2,3-*b*]indole (3w)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.47$; golden solid, mp. 219 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3411, 3051, 2956, 2838, 1605, 1526, 1470, 1421, 1296, 1254, 1179, 1031, 819, 804, 573, 511 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.84$ (s, 1H), 7.98 (d, J = 2.0 Hz, 1H), 7.70 (s, 1H),

7.56 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 1H), 7.30 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.99 (d, *J* = 8.5 Hz, 2H), 3.78 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 158.4, 141.2, 140.0, 135.6, 127.6, 126.1, 124.1, 123.7, 123.1, 121.1, 114.6, 113.6, 112.8, 111.4, 55.2.

HRMS (ESI) *m/z* calcd for [M]⁺ C₁₇H₁₂BrNOS 358.9803, found 358.9804.

5-Bromo-2-(4-fluorophenyl)-8*H*-thieno[2,3-*b*]indole (3x)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.47$; golden solid, mp. 178 °C.

FT-IR (KBr, 4000–400 cm⁻¹): 3417, 3078, 2922, 1602, 1562, 1529, 1482, 1452, 1236, 1159, 1098, 915, 816, 792, 687 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 11.88$ (s, 1H), 7.99 (d, J = 1.5 Hz, 1H), 7.81 (s, 1H),

7.67 (dd, *J* = 8.5, 5.5 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 1H), 7.35–7.29 (m, 1H), 7.26 (m, 2H).

¹³C NMR (125 MHz, DMSO- d_6): $\delta = 161.2$ (d, J = 242.8 Hz), 141.8 (s), 140.1 (s), 134.2 (s), 131.6 (d, J = 3.1 Hz), 126.6 (d, J = 8.0 Hz), 124.3 (s), 123.7 (s), 123.1 (s), 121.2 (s), 116.0 (d, J = 21.6 Hz), 114.3 (s), 113.6 (s), 111.6 (s).

HRMS (ESI) *m/z* calcd for [M]⁺ C₁₆H₉BrFNS 344.9623, found 344.9577.

5-Nitro-2-phenyl-8*H*-thieno[2,3-*b*]indole (3y)

Analytical TLC on silica gel, 4:1 *n*-hexane/acetone $R_f = 0.37$; brown solid, mp. 250–251°C.

FT-IR (KBr, 4000–400 cm⁻¹): 3436, 3050, 2920, 1610, 1521, 1500, 1318, 1297, 1253, 1120, 1059, 925, 850, 819, 732, 677 cm⁻¹.

¹H NMR (500 MHz, acetone- d_6): $\delta = 11.46$ (s, 1H), 8.82 (d, J = 2.0 Hz, 1H), 8.15 (dd, J =

9.0, 2.0 Hz, 1H), 7.98 (s, 1H), 7.71 (m, 3H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (125 MHz, acetone- d_6): $\delta = 145.8$, 144.5, 142.4, 139.0, 136.2, 130.1, 128.2, 127.1,

126.1, 122.4, 118.5, 116.6, 114.9, 112.8.

HRMS (ESI) m/z calcd for $[M]^+ C_{16}H_{10}N_2O_2S$ 294.0463, found 294.0418.

Section S6. Copies of ¹H , ¹³C NMR and HRMS spectra of all products

S24

3b

thieno[2,3-*b*]indole 3c

¹H (top) and ¹³C (bottom) NMR spectra of 2-(4-nitrophenyl)-8*H*-thieno[2,3-*b*]indole 3e

b]indole 3f

8*H*-thieno[2,3-*b*]indole 3i

thieno[2,3-b]indole 3j

thieno[2,3-b]indole 31

8*H*-thieno[2,3-*b*]indole 3m

8*H*-thieno[2,3-*b*]indole 3n

b]indole 30

b]indole 3q

thieno[2,3-b]indole 3r

8*H*-thieno[2,3-*b*]indole 3s

thieno[2,3-b]indole 3t

8*H*-thieno[2,3-*b*]indole 3w

thieno[2,3-*b*]indole 3x

b]indole 3y

Figure S35. HRMS spectra of 2-(thiophen-2-yl)-8*H*-thieno[2,3-*b*]indole

Figure S36. HRMS spectra of 5-methyl-2-phenyl-8*H*-thieno[2,3-*b*]indole

Figure S38. HRMS spectra of 2-(4-methoxyphenyl)-5-methyl-8H-thieno[2,3-b]indole

Figure S39. HRMS spectra of 2-(4-fluorophenyl)-5-methyl-8*H*-thieno[2,3-*b*]indole

Figure S40. HRMS spectra of 5-methoxy-2-phenyl-8*H*-thieno[2,3-*b*]indole

Figure S41. HRMS spectra of 5-methoxy-2-(p-tolyl)-8H-thieno[2,3-b]indole

Figure S42. HRMS spectra of 5-methoxy-2-(4-fluorophenyl)-8*H*-thieno[2,3-*b*]indole

Figure S43. HRMS spectra of 5-fluoro-2-phenyl-8H-thieno[2,3-b]indole

Figure S44. HRMS spectra of 5-fluoro-2-(p-tolyl)-8H-thieno[2,3-b]indole

Figure S46. HRMS spectra of 5-chloro-2-(p-tolyl)-8H-thieno[2,3-b]indole

Figure S47. HRMS spectra of 5-chloro-2-(4-methoxyphenyl)-8*H*-thieno[2,3-*b*]indole

Figure S48. HRMS spectra of 5-chloro-2-(4-fluorophenyl)-8H-thieno[2,3-b]indole

Figure S49. HRMS spectra of 5-bromo-2-phenyl-8H-thieno[2,3-b]indole

Figure S50. HRMS spectra of 5-bromo-2-(p-tolyl)-8H-thieno[2,3-b]indole

Figure S51. HRMS spectra of 5-bromo-2-(4-methoxyphenyl)-8H-thieno[2,3-b]indole

Figure S52. HRMS spectra of 5-bromo-2-(4-fluorophenyl)-8*H*-thieno[2,3-*b*]indole

Figure S53. HRMS spectra of 5-nitro-2-phenyl-8*H*-thieno[2,3-*b*]indole