Supplemental Information

Sensitive distance-based paper-based quantification of mercury ions using carbon nanodots and heating-based preconcentration

Benjawan Ninwong^{a,b}, Prapaporn Sangkaew^a, Photcharapan Hapa^a, Nalin Ratnarathorn^a, Ruth F. Menger^c, Charles S. Henry^c, and Wijitar Dungchai^{a,d*}

^aOrganic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok, 10140, Thailand.

^bNanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat, 80280, Thailand.

^cDepartments of Chemistry and Chemical & Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA

^{*d}</sup><i>Applied Science & Engineering for Social Solution Unit, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok, 10140, Thailand.*</sup>

*Corresponding author: Asst. Prof. Dr. Wijitar Dungchai

E-mail: wijitar.dun@kmutt.ac.th; Fax: +66-2-470-8840; Tel: +66-2-470-9553

Fig. S1 Black box with luminous scale.

2. Characterization of NCDs by XRD

Fig. S2 XRD spectra at 2θ.

3. Characterization of NCDs by FT-IR

Fig. S3 FT-IR spectra with the comparison of carbon nanodots and citric acid.

4. Characterization of NCDs by TEM

Fig. S4 TEM images for NCDs (a), particle size distribution of NCDs (b), NCDs NPs in the presence of 20 mg L^{-1} Hg²⁺ (c), and particle size distribution of NCDs with Hg²⁺ (d).

Fig. S5 Effect of paper type on fluorescent signal before and after addition of $10 \text{ mg } \text{L}^{-1} \text{ Hg}^{2+}$.

Fig. S6 Effect of NCD concentration in the range of 3 - 11 g L⁻¹ with 10 mg L⁻¹ of Hg²⁺.

(b)

Fig. S7 Fluorescence intensity ratio of NCD before and after (I₀/I) addition of 10 mg L⁻¹ Bi³⁺, Hg²⁺ and the mixture of Bi³⁺ and Hg²⁺ at 350 nm excitation wavelength (a). Effect of Bi³⁺ concentration in the range of 1 - 20 mg L⁻¹ with 10 mg L⁻¹ of Hg²⁺ (b). Sensitivity of Hg²⁺ detection with and without Bi³⁺

8. Interferences effect

Fig. S8 Interferences effect with 1:100 ratio of analyte to interference with 10 mg L⁻¹ of Hg²⁺

9. Heating preconcentration

Fig. S9 Preconcentration using heating system which was controlled at 100 °C \pm 1.

 Blank
 0.5
 1
 5
 10
 15
 20
 25
 mg L⁻¹

(b)

Fig. S10 The determination of Hg²⁺ using fluorescent distance-based paper device with the image under black light (a) and calibration curve in the range 0.5 – 25 mg L⁻¹ (b).

10. Stability of NCDs

Fig. S11 Stability of CDs in solution (a) and on distance-based paper device (b).

11. Statistical testing

Table S1 Comparison between our method and HG-AAS with t-test

t-Test: Paired Two Sample for Means

	Variable	Variable
	1	2
Mean	1.806667	1.743333
Variance	0.003733	0.018233
Observations	3	3
Pearson Correlation	0.977716	
Hypothesized Mean		
Difference	0	
df	2	
t Stat	1.436265	
P(T<=t) one-tail	0.143722	
t Critical one-tail	2.919986	
$P(T \le t)$ two-tail	0.287444	
t Critical two-tail	4.302653	

Table S2 Lifetime of NCDs for 150 days with ANOVA

SS	df	MS	F	P-value	F crit
229.7452	10	22.97452	1.536822	0.192083	2.296696
328.886	22	14.94937			
558.6312	32				
	<i>SS</i> 229.7452 328.886 558.6312	SS df 229.7452 10 328.886 22 558.6312 32	SS df MS 229.7452 10 22.97452 328.886 22 14.94937 558.6312 32 32	SS df MS F 229.7452 10 22.97452 1.536822 328.886 22 14.94937 558.6312 558.6312 32 32 32	SS df MS F P-value 229.7452 10 22.97452 1.536822 0.192083 328.886 22 14.94937 558.6312 32