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S1

Characterizations

The physical elucidation and morphological analysis of Bi3O2 nanostructures were 

performed by using X-ray diffraction patterns (Bruker D8 discover XRD diffractometer using 

Cu Kα radiation (λ = 1.5406 Å) at 40 kV and 40 mA), field-emission scanning electron 

microscopy (FE-SEM, Hitachi, S-4800, 15 kV) images equipped with energy-dispersive X-ray 

spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM, JEOL 

2100F) with the selected area electron diffraction (SAED) (Technai F20) techniques, 

respectively. The X-ray photoelectron spectroscopy (XPS, VG Scientifics ESCALAB250) 

measurement was performed to analyze the chemical bonding information of Bi-O. The 

Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) measurement plots 

obtained using the Micrometrics ASAP2010 analyzer were used to obtain the surface area 

and pore-size distributions of the powder scratched from the respective Bi2O3-film-sensor 

surfaces.



Figure S1. The response vs. time (at different 10-100 ppm) of the (a) BO, (b) PBO, (c) EBO, 

and (d) ABO film sensors



Figure S2. The repeatability of transient vs. time (at 100 ppm) of the BO, PBO, EBO and 

ABO film sensors



Figure S3. The repeatability of response vs. time (at 100 ppm) of the (a) BO, (b) PBO, (c) 

EBO, and (d) ABO film sensors



(a)                                                                   (b)

Figure. S4  (a)Stability measurements of the BO, PBO, EBO, and ABO film sensors (b) after 

sensing experiments morphological stability of the BO, PBO, EBO, and ABO film sensors 



Figure. S5. Survey XPS before and after gas sensing of (a) BO, (b) PBO, (c) EBO, and (d) 

ABO film sensors



Figure. S6. Enlarged XPS spectra of Bi4f before and after gas sensing of (a) BO, (b) PBO, (c) 

EBO, and (d) ABO film sensors



Figure. S7. The gas sensing mechanism of the BO, PBO, EBO and ABO nanosensors in air and 

in the presence of CO2 gas.



Table S1 Compared present work with the previously reported data on CO2 gas sensing.

Sr. 

No.

Material Structure Synthesis method C 

(ppm)

S

 (%)

tres/trec (s) Temp Ref.

1 graphene Nanosheet Stamping method 100 26 8/10 60 S1

2 rGO-F20 Smooth 

nanosheet

Hydrogen plasma 

method

1500 15 ~240/240 23 S2

3 La2O3 Micro rod CBD 350 48 50/73 250 S3

4 La2O3 Honeycomb Spray pyrolysis 500 68 180/125 300 S4

5 La2O3 Web-like 

nanoparticles

Ultrasonic spray 

pyrolysis

300 75 80/141 225 S5

6 La2O3 Nanorod Microwave-

Assisted

400 25 80/50 450 S6

7 Pd: La2O3 Disk on 

Nanorod

Microwave-

Assisted

400 64 80/50 250 S6

8 Bi2O3 Nanoporous Anodization 100 77 - 27 S7

9 -Bi2O3 Nanoplates CBD 1000 100 40/50 150 S8



10 BO Woolen 

globes

CBD 100 123 77/82 27

11 PBO Nano sheets CBD 100 179 132/82 27

12 ABO Flower-rose CBD 100 158 151/28 27

13 EBO Spongy 

square plates

CBD 100 132 89/32 27

Present 

Work

C = concentration; tres/trec = response time/recovery time; and  S % = Gas Response in %
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