Stereoselective polymerization of methyl methacrylate and *rac*-lactide

mediated by iminomethylpyridine based Cu(II) complexes

Jaegyeong Lee^a, Minyoung Yoon^a, Hyosun Lee,^{a,*} and Saira Nayab^{b,*}

FIGURE S1. FT-IR spectra of [L_ACuCl₂]. 03 **FIGURE S2.** FT-IR spectra of $[L_BCu(\mu-Cl)Cl]_2$. 04 FIGURE S3. FT-IR spectra of [L_CCuCl₂]. 05 **FIGURE S4.** FT-IR spectra of [L_DCuCl₂]. 06 FIGURE S5. FT-IR spectra of [L_ECuCl₂]. 07 FIGURE S6. FT-IR spectra of [L_FCuCl₂]. **08** 09 **FIGURE S7.** Summary of elemental analysis of the synthesized Cu(II) complexes. FIGURE S8. ¹H NMR spectrum of PLA obtained with $[L_BCu(\mu-Cl)Me]_2$ at room 10 temperature, indicating complete conversion of monomer to polymer. FIGURE S9. Homodecoupled ¹H NMR spectrum of PLA obtained with $[L_{\rm B}Cu(\mu$ -11 Cl)Me₂ at room temperature. FIGURE S9-1. Extended range of homodecoupled ¹H NMR spectrum of PLA obtained 12 with $[L_BCu(\mu-CI)Me]_2$ at room temperature. FIGURE S9-2. Check monomer peak in ¹H NMR spectrum of PLA obtained with 13 $[L_BCu(\mu-Cl)Me]_2$ at room temperature. FIGURE S10. Homodecoupled ¹H NMR spectrum of PLA obtained with $[L_BCu(\mu -$ 14 Cl)Mel₂ at -25 °C. 15 FIGURE S10-1. Extended range of homodecoupled ¹H NMR spectrum of PLA obtained with $[L_BCu(\mu-Cl)Me]_2$ at -25 °C. FIGURE S10-2. Check monomer peak in homodecoupled ¹H NMR spectrum of PLA 16 obtained with $[L_BCu(\mu-Cl)Me]_2$ at -25 °C. FIGURE S10-3. Check monomer peak in ¹H NMR spectrum of PLA obtained with 17 $[L_BCu(\mu-Cl)Me]_2$ at -25 °C. FIGURE S11. Representative ¹H NMR spectrum for calculating tacticity of the results 18

Electronic Supporting Information

PMMA obtained with $[L_E CuCl_2]$.	
Table S1. Crystal data and structure refinement data for Cu(II) complexes.	19
Table S2. Selected bond lengths (Å) and angles (°) of Cu(II) complexes.	21
Scheme S1. Proposed mechanism for ROP of <i>rac</i> -LA catalyzed by $[L_nCuMe_2]$ ($L_n = L_A$	22
$-L_{\rm F}$).	

FIGURE

FIGURE

	Eager)	Sperience Summari	ze Results			Eager	Xperience Summari	ze Results		
	Metl	Date : 2018-0 nod Name : NCHS	2-28 at 08:44:38			Met	Date : 2018-0 thod Name : NCHS	12-28 at 08:44:49		
		TTellane . PV	0100220.001			Method	FITEDUME : EN-C-T	0100220.000		
Group No : 1 Sample Name	Element % Nitrogen	Carbon	Hydrogen	Sulphur	Group No : 1 Sample Name	Element % Nitrogen	Carbon	Hydrogen	Sulphur	
LA CUCI CLACHO	13.46959114 13.25759125	38.71767426 38.61170578	4.882183075 4.871536732	00	(" LE CUCI [LpCuCh:	11.99687576	41.15446854 41.09791183	4.890295506 4.887745857	00	
Component Name	2 Sample(s) in (Average	Group No : 1			Component Name	2 Sample(s) in Average	Group No : 1			
Nitrogen Carbon Hydrogen Sulphur	13.36359119 38.66469002 4.876859903 0				Nitrogen Carbon Hydrogen Sulphur	11.94898748 41.12619019 4.889020681 0				
Group No : 2 Sample Name	Element % Nitrogen	Carbon	Hydrogen	Sulphur	Group No : 2 Sample Name	Element % Nitrogen	Carbon	Hydrogen	Sulphur	
LB_CuCl [LB(u(H4))	9.192878723 9.114869118	35.97859192 36.03707123	4.020053864 4.01180172	00	LG_CUC1 CLECHCLE	13.12195015 12.86294174	40.93544006 40.7428894	5.30657959 5.235087395	00	6
Component Name	2 Sample(s) in (Average	Group No : 2			Component Name	2 Sample(s) in Average	Group No : 2			
Nitrogen Carbon Hydrogen Sulphur	9.15387392 36.00783157 4.015927792 0				Nitrogen Carbon Hydrogen Sulphur	12.99244595 40.83916473 5.270833492 0				
Group No : 3 Sample Name	Element % Nitrogen	Carbon	Hydrogen	Sulphur	Group No ; 1 Sample Name	Element % Nitrogen%	Carbons	Hydrogen%	Sulphur%	
ID_CUCI (LCCAC	11.93679333 12.08079624	44.59290695 44.66499329	5.482099533 5.466984272	00	[LHCuC12][HCm(#-	8.981668472 (4)(1)9.010733604	38.65621185 38.71915817	4.508579254 4.492286682	0 0	1
Component Name	2 Sample(s) in (Average	Group No : 3			Component Name	2 Sample(s) in Average	Group No : 1			
Nítrogen Carbon Hydrogen Sulphur	12.00879478 44.62895012 5.474541903 0				Nitrogen% Carbon% Hydrogen% Sulphur%	8.996201038 38.68768501 4.500432968 0				

FIGURE S9-1

FIGURE S10-1

1 Table S1

	$[L_BCu(\mu-Cl)Cl]_2$	[L _C CuCl ₂]	[L _E CuCl ₂]	[L _F CuCl ₂]
Empirical formula	$C_{18}H_{24}Cl_4Cu_2N_4O_2$	$C_{13}H_{19}Cl_2CuN_3$	$C_{11}H_{17}Cl_2CuN_3$	$C_{10}H_{14}Cl_2CuN_2O$
Formula weight	597.29	351.75	325.71	312.67
Temperature (K)	100(2)	200(2)	200(2)	200(2)
Wavelength (Å)	0.630	0.71073	0.610	0.610
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/n$	P-1	$P2_1/c$
a (Å)	8.8760(2)	11.3629(2)	7.2770(2)	19.137(4)
b (Å)	6.9330(1)	6.8532(1)	8.9970(2)	8.7180(2)
c (Å)	18.664(4)	19.328(3)	11.587(2)	7.4750(2)
α (°)	90	90	96.81(3)	90
β (°)	93.56(3)	104.988(4)	102.67(3)	93.40(3)
γ (°)	90	90	112.98(3)	90
Volume (Å ³), Z	1146.3(4), 2	1453.9(4), 4	663.5(3), 2	1244.9(4), 4
Density (calculated) (Mg m ⁻³)	1.730	1.607	1.630	1.668
Absorption coefficient (mm ⁻¹)	1.677	1.859	1.332	1.419
F(000)	604	724	334	636
Crystal size (mm ³)	$0.16 \times 0.13 \times 0.10$	$0.28 \times 0.14 \times 0.10$	$0.07\times0.07\times0.055$	$0.07 \times 0.06 \times 0.035$
Theta range for data collection (°)	2.779 to 25.996	2.18 to 28.35	1.588 to 26.996	2.204 to 26.997
Index ranges	$-12 \le h \le 12$	$-15 \le h \le 14$	$-10 \le h \le 10$	$-27 \le h \le 28$

	$-9 \le k \le 9$	$-9 \le k \le 8$	$-13 \le k \le 13$	$-12 \le k \le 12$
	$-25 \le l \le 25$	$-25 \le l \le 23$	$-17 \le l \le 17$	- 11 ≤ <i>l</i> ≤ 11
Reflections collected	9052	10348	7894	14302
Independent reflections	3086 [R(int) = 0.1035]	3615 [R(int) = 0.0675]	4278 [R(int) = 0.0234]	4258 [R(int) = 0.0763]
Completeness to theta	92.5 % (22.210°)	99.5 % (28.35°)	95.5 % (21.469°)	99.6 %
Refinement method	Full-matrix least-squares	Full-matrix least-squares	Full-matrix least-squares	Full-matrix least-squares
	on F ²	on F ²	on F ²	on F ²
Data / restraints / parameters	3086 / 6 / 107	3615 / 0 / 172	4278 / 0 / 156	4258 / 0 / 147
Goodness-of-fit on F ²	1.077	1.110	1.093	1.083
<pre>Final R indices [I>2sigma(I)]</pre>	$R_1 = 0.0564$	$R_1 = 0.0512$	$R_1 = 0.0302$	$R_1 = 0.0360$
	$wR_2 = 0.1579$	$wR_2 = 0.0918$	$wR_2 = 0.0874$	$wR_2 = 0.1027$
R indices (all data)	$R_1 = 0.0573$	$R_1 = 0.1169$	$R_1 = 0.0305$	$R_1 = 0.0372$
	$wR_2 = 0.1587$	$wR_2 = 0.1519$	$wR_2 = 0.0878$	$wR_2 = 0.1038$
Largest diff. peak and hole (e.Å-3)	1.625 and -1.622	1.094 and -1.740	0.585 and -0.962	0.941 and -1.058

[L _B Cu(µ–C	Cl)Cl] ₂	[L _C CuCl ₂]		[L _E CuCl ₂]		[L _F CuCl ₂]	
			Bond lengt	hs (Å)			
Cu(1)-N(1)	2.032(2)	Cu(1)-N(3)	2.041(5)	Cu(1)-N(1)	2.0652(1)	Cu(1)-N(1)	2.0332(1)
Cu(1)-N(2)	2.039(2)	Cu(1)-N(2)	1.967(5)	Cu(1)-N(2)	2.0341(1)	Cu(1)-N(2)	2.0449(1)
Cu(1)-Cl(2)	2.2625(8)	Cu(1)-N(1)	2.088(5)	Cu(1)-N(3)	2.1163(1)	Cu(1)-Cl(2)	2.2605(5)
Cu(1)-Cl(1)	2.2724(9)	Cu(1)-Cl(2)	2.2379(2)	Cu(1)-Cl(2)	2.2860(7)	Cu(1)-Cl(1)	2.2609(6)
N(2)-C(7)	1.465(3)	Cu(1)-Cl(1)	2.5855(2)	Cu(1)-Cl(1)	2.4659(1)	N(2)-C(7)	1.4700(2)
N(1)-C(1)	1.336(3)	C(13)-N(3)	1.330(7)	N(1)-C(1)	1.3364(2)	N(1)-C(1)	1.3366(2)
N(1)-C(5)	1.357(3)	C(9)-N(3)	1.363(7)	N(1)-C(5)	1.3547(2)	N(1)-C(5)	1.3503(2)
N(2)-C(6)	1.278(3)	N(2)-C(8)	1.269(7)	N(2)-C(6)	1.2751(2)	N(2)-C(6)	1.2703(2)
			Bond angl	es (°)			
N(1)-Cu(1)-N(2)	80.16(9)	N(2)-Cu(1)-N(3)	79.06(2)	N(2)-Cu(1)-N(1)	78.89(5)	N(1)-Cu(1)-N(2)	79.98(5)
N(1)-Cu(1)-Cl(2)	170.10(6)	N(3)-Cu(1)-Cl(2)	96.93(1)	N(1)-Cu(1)-Cl(2)	89.61(4)	N(1)-Cu(1)-Cl(2)	170.23(3)
N(2)-Cu(1)-Cl(2)	94.05(7)	N(2)-Cu(1)-Cl(2)	156.81(2)	N(2)-Cu(1)-Cl(2)	156.49(4)	N(2)-Cu(1)-Cl(2)	94.69(4)
N(1)-Cu(1)-Cl(1)	92.36(6)	N(3)-Cu(1)-Cl(1)	94.49(1)	N(1)-Cu(1)-Cl(1)	101.86(4)	N(1)-Cu(1)-Cl(1)	92.69(4)
N(2)-Cu(1)-Cl(1)	172.43(7)	N(2)-Cu(1)-Cl(1)	100.44(2)	N(2)-Cu(1)-Cl(1)	96.93(4)	N(2)-Cu(1)-Cl(1)	167.84(3)
Cl(2)-Cu(1)-Cl(1)	93.52(3)	Cl(2)-Cu(1)-Cl(1)	102.65(6)	Cl(2)-Cu(1)-Cl(1)	105.53(3)	Cl(2)-Cu(1)-Cl(1)	93.88(3)
C(1)-N(1)-C(5)	118.5(2)	N(3)-Cu(1)-N(1)	159.69(2)	N(1)-Cu(1)-N(3)	160.41(4)	C(1)-N(1)-C(5)	118.10(1)
C(1)-N(1)-Cu(1)	127.88(2)	N(2)-Cu(1)-N(1)	82.08(2)	N(2)-Cu(1)-N(3)	92.36(5)	C(1)-N(1)-Cu(1)	128.06(1)
C(5)-N(1)-Cu(1)	113.50(2)	N(1)-Cu(1)-Cl(2)	97.43(1)	N(3)-Cu(1)-Cl(2)	91.92(4)	C(5)-N(1)-Cu(1)	113.76(9)
C(6)-N(2)-C(7)	119.0(2)	N(1)-Cu(1)-Cl(1)	96.30(2)	N(3)-Cu(1)-Cl(1)	96.55(4)	C(6)-N(2)-C(7)	118.89(1)

