Electronic Supplementary Information

Ultrathin sulfate-intercalated NiFe-layered double hydroxides nanosheets for efficient electrocatalytic oxygen evolution

Xiao-Xiao Jiang,^{a,b} Jiang-Yan Xue,^a Zhong-Yin Zhao,^a Cong Li,^{*a*} Fei-Long Li,^c* Chen Cao,^a Zheng Niu, ^a* Hong-Wei Gu, ^a and Jian-Ping Lang ^{a, b,*}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou

215123, People's Republic of China

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China ^cSchool of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, People's Republic of China

* Correspondence authors at: College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

Tel: +86-512-65882865; fax: +86-512-65880328.

E-mail address: jplang@suda.edu.cn (J.P. Lang).

Contents

Fig. S1 (a) TEM image and (b) PXRD patterns of the products obtained under similar conditions
of U-LDH(SO ₄ ²⁻) except that only water was used as the reaction solventS3
Fig. S2 (a) TEM image and (b) PXRD patterns of the products obtained under similar conditions
of U-LDH(SO ₄ ²⁻) except that only DMAC was used as the reaction solventS3
Fig. S3 EDX spectrum of U-LDH(SO ₄ ²⁻)
Fig. S4 (a) SEM image, b) TEM image and (c) PXRD patterns of B-LDH(CO ₃ ²⁻)S4
Fig. S5. XPS spectra of B-LDH(CO ₃ ²⁻): (a) survey scan, (b) Ni 2p, (c) Fe 2p, (d) O 1s, (e) C 1s, (f)
F 1s
Fig. S6 FT-IR spectra of U-LDH($SO_4^{2^-}$) and B-LDH($CO_3^{2^-}$)
Table S1 Comparisons of OER performance for Fe/Ni-based and LDH-based electrocatalysts in 1
М КОН
Fig. S7 TEM images of U-LDH(SO ₄ ²⁻) after 1000 CV cycles
Fig. S8 XPS spectra of U-LDH(SO_4^{2-}) after 1000 CV cycles: (a) survey scan, (b) O 1s, (c) C 1s, (d)
S 2p
Fig. S9 (a) SEM image, (b) TEM image, (c) PXRD patterns of Ni(OH) ₂ S9
Fig. S10 CV curves of Ni(OH) ₂ and U-LDH(SO ₄ ²⁻) at a scan rate of 5 mV \cdot s ⁻¹
Fig. S11 CV curves in a potential range of 1.22-1.23 V versus RHE of U-LDH(SO ₄ ²⁻)S10
Fig. S12 Photograph of U-LDH(SO ₄ ²⁻) prepared in gram-scale: (a) U-LDH(SO ₄ ²⁻) prepared in a 1
L reactor, b) powder of U-LDH(SO_4^{2-}) weighed on a precision electronic balance
Fig. S13 (a, b) TEM images, (c) PXRD patterns of U-LDH(SO_4^{2-}) prepared in gram-scale S11
Fig. S14 (a) Linear sweep voltammetry OER curve and (b) Tafel plot of U-LDH(SO ₄ ²⁻) prepared
in gram-scale

Fig. S1 (a) TEM image and (b) PXRD patterns of the products obtained under similar conditions of U-LDH(SO_4^{2-}) except that only water was used as the reaction solvent.

Fig. S2 (a) TEM image and (b) PXRD patterns of the products obtained under similar conditions of U-LDH(SO_4^{2-}) except that only DMAC was used as the reaction solvent.

Fig. S3 EDX spectrum of U-LDH(SO_4^{2-}).

Noted: (**n**(**Ni**) : **n**(**Fe**) : **n**(**S**) = 18.1: 5.9: 5.5 = 3: 1: 0.93)

Fig. S4 (a) SEM image, (b) TEM image and (c) PXRD patterns of $B-LDH(CO_3^{2-})$.

Fig. S5 XPS spectra of B-LDH(CO_3^2): (a) survey scan, (b) Ni 2p, (c) Fe 2p, (d) O 1s, (e) C 1s, (f) F 1s.

Fig. S6 FT-IR spectra of U-LDH(SO_4^{2-}) and B-LDH(CO_3^{2-}).

Noted: The peak at 1384 cm⁻¹ is attributed to $v_3(CO_3^{2^-})$, while those at 1108 cm⁻¹ and 618 cm⁻¹ are attributed to the $v_3(SO_4^{2^-})$ and $v_4(SO_4^{2^-})$.

Catalysts	Electrode	Overpotential (mV)	Overpotential (mV) Tafel slope	
		at 10 mA·cm ⁻²	(mV·dec ⁻¹)	Keference
U-LDH(SO ₄ ²⁻)	GCE	212	65.2	This work
SO ₄ ^{2–} (EG) NiFe LDH	Carbon	275	56	Chem. Mater., 2018,
	paper	375		30 , 4321-4330.
NiFe-SO ₄	Ni foam	356	93	Chem. Mater., 2019,
				31 , 6798-6807.
	GCE	280	49.4	Angew. Chem. Int.
Ni-Fe LDH nanoprisms				<i>Ed.</i> , 2018, 57 ,
				172-176.
Ni/NiO@CoFe LDH	Ni/NiO	220	34.3	ChemSusChem, 2019,
	foam	230		12 , 2773-2779.
NiFe/Cu ₂ O NWs/CF	Cu foam	284	42	ChemSusChem, 2017,
				10, 1475-1481.
Fe(OH) ₃ @Co-MOF-74	carbon	292	44	ChemSusChem, 2019,
	paper			12 , 4623-4628.
NiFe-LDH-UF	Graphite	254	32	Adv. Energy Mater.,
(UF: Ultrafine)	paper	234		2018, 8 , 1703585.
NiFe hydroxide	GCE	270	36.2	Angew. Chem. Int.
				<i>Ed.</i> , 2019, 58 ,
				736-740.
δ-FeOOH NSs/NF	Ni foam	265	36	Adv. Mater., 2018, 30 ,
				1803144.
CoMn-LDH	GCE		43	J. Am. Chem. Soc.,
		325		2014, 136 ,
				16481-16484.
NiFeRu LDH/Ni foam	Ni foam	225	32.4	Adv. Mater., 2018, 30 ,

Table S1 Comparisons of OER performance for Fe/Ni-based and LDH-b	ased electrocatalysts in 1
М КОН.	

				1706279.
Ni _{0.75} Fe _{0.125} V _{0.125} -LDHs/	Ni foam	231	39.4	Small, 2018, 14 ,
NF				1703257.
Cu@CoFe LDH	Cu foam	240	44.4	Nano Energy, 2017,
				41 , 327-336.
CoFe LDHs-Ar	GCE	266	37.85	Angew. Chem. Int.
				<i>Ed.</i> , 2017, 56 ,
				5867-5871.

Fig. S7 TEM images of U-LDH(SO_4^{2-}) after 1000 CV cycles.

Fig. S8 XPS spectra of U-LDH(SO₄²⁻) after 1000 CV cycles: (a) survey scan, (b) O 1s, (c) C 1s, (d) S 2p.

Fig. S9 (a) SEM image, (b) TEM image, (c) PXRD patterns of Ni(OH)₂.

Fig. S10 CV curves of Ni(OH)₂ and U-LDH(SO₄²⁻) at a scan rate of 5 mV \cdot s⁻¹.

Fig. S11 CV curves in a potential range of 1.22-1.23 V versus RHE of U-LDH(SO₄²⁻).

Fig. S12 Photograph of U-LDH($SO_4^{2^-}$) prepared in gram-scale: (a) U-LDH($SO_4^{2^-}$) prepared in a 1 L reactor, (b) powder of U-LDH($SO_4^{2^-}$) weighed on a precision electronic balance.

Fig. S13 (a, b) TEM images, (c) PXRD patterns of U-LDH(SO₄²⁻) prepared in gram-scale.

Fig. S14 (a) Linear sweep voltammetry OER curve and (b) Tafel plot of U-LDH(SO₄²⁻) prepared in gram-scale.