# Direct Use of 1,3-Dienes for Allylation of Ketones via Catalytic Hydroindation

### **Supporting Information**

Itaru Suzuki,<sup>1</sup> Kensuke Yagi<sup>1,2</sup> Shinji Miyamoto, and Ikuya Shibata\*<sup>1</sup>

<sup>1</sup>Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan.
<sup>2</sup>Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
e-mail: shibata@epc.osaka-u.ac.jp
Tel: +81-6-6879-8974

### 1. Analysis

FTIR spectra were recorded as a thin film on a Nicolet IS5 spectrometer. All <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded with a JEOL JMTC-400/54/SS (400 and 100 MHz, respectively) in deuteriochloroform (CDCl<sub>3</sub>) containing 0.03% (w/v) of tetramethylsilane as an internal standard. Yields were determined by <sup>1</sup>H NMR using 1,1,1,2-tetrachloroethane or 1,1,2,2-tetrachloroethane as an internal standard. Mass spectra were recorded on a JEOL JMS-DS-303 spectrometer. Flash column chromatography was performed by Yamazen YFLC-AI-580 using Hi-Flash Silica gel 2L Hi-Flash Column 20-3-mL/min eluted by Hexane/EtOAc with gradation mode changing from 9/1 to 3/7 depending on R<sub>f</sub> values of each compound. Bulb-to-Bulb distillation (Kugelrohr) was accomplished at the oven temperature and pressure indicated. Purification of products by recycling preparative HPLC was performed by Japan Analytical Industry Co., Ltd. LC-5060.

#### 2. Materials

Super-dehydrated tetrahydrofuran (THF) acetonitrile (MeCN) were purchased from commercial sources and used through GC MINI Solvent Dispensing System (Nikko Hansen & Co., LTD). Dehydrated diethyl ether (Et<sub>2</sub>O) and toluene were bought from commercial sources and used as obtained.

Silanes such as Et<sub>3</sub>SiH, Ph<sub>3</sub>SiH, Ph<sub>2</sub>SiH<sub>2</sub>, PhSiH<sub>3</sub> and MePhSiH<sub>2</sub> were purchased from chemical resources and used as obtained.

1,3-Butadiene (1a) was purchased from TCI stored in a cylinder and we installed a valve and 20 cm needle to the cylinder. The gas was introduced from the needle into a capped 10 mL graduated cylinder cooled at -40 °C and measured (20 mmol, ca. 1.6 mL). Then it was quickly poured into the reaction system filled with Ar. Other dienes (1b and 1c) were bought from commercial sources and used as obtained.

Vinyl cyclopropane 4 was prepared by our previously reported method.<sup>1</sup>

Other materials we employed throughout this work were purchased from chemical resources and used without any purification.

#### **3. Experimental Procedures**

**Table 1.** In a sealed tube with a septum rubber,  $InCl_3$  (0.2 mmol, 44.2 mg) and NaOMe (0.2 mmol, 10.8 mg) were introduced and dried under reduced pressure with heating by a heat-gun followed by refilling with Ar. Then a solvent (2 mL) was poured into the tube and the mixture was stirred at room temperature for 30 min. After a silane (1.1 mmol) was added, the mixture was cooled at -40 °C and liquefied 1,3-butadiene (1a, 20 mmol) was poured into the mixture. Then acetophenone (2a, 1.0 mmol, 0.120 g) and MeOH (1.0 mmol) were added and the tube was sealed and stirred at indicative temperature for several time. The reaction was quenched with water (10 mL) and extracted with Et<sub>2</sub>O (3 x 20 mL). The collected organic layer was dried over MgSO<sub>4</sub>. After filtration, the filtrate was evaporated in vacuo to give a residue, which was dissolved in CDCl<sub>3</sub> and analyzed by <sup>1</sup>H NMR.

**Table 2.** In a sealed tube with a septum rubber,  $InCl_3$  (0.2 mmol, 44.2 mg) and NaOMe (0.2 mmol, 10.8 mg) were introduced and dried under reduced pressure with heating by a heat-gun followed by refilling with Ar.

Then THF (2 mL) was poured into the tube and the mixture was stirred at room temperature for 10 min. After MePhSiH<sub>2</sub> (1.1 mmol, 0.134 g) was added, the mixture was cooled at -40 °C and liquefied 1,3-butadiene (1a, 20 mmol) was poured into the mixture. Then MeOH (1.0 mmol) and ketone 2 (1.0 mmol) were added and the tube was sealed and stirred at 60 °C for 3-6 hours. The reaction was quenched with water (10 mL) and extracted with Et<sub>2</sub>O (3 x 20 mL). The collected organic layer was dried over MgSO<sub>4</sub>. After filtration, the filtrate was evaporated in vacuo to give a residue, which was dissolved in CDCl<sub>3</sub> and analyzed by <sup>1</sup>H NMR. Purification was performed by distillation under reduced pressure and recycling preparative HPLC to separate stereoisomers.

**Scheme 2, ep1.** In a sealed tube with a septum rubber,  $InCl_3$  (0.2 mmol, 44.2 mg) and NaOMe (0.2 mmol, 10.8 mg) were introduced and dried under reduced pressure with heating by a heat-gun followed by refilling with Ar. Then THF (2 mL) was poured into the tube and the mixture was stirred at room temperature for 10 min. After MePhSiH<sub>2</sub> (1.1 mmol, 0.134 g) was added, isoprene (**1b**, 20 mmol) was poured into the mixture. Then MeOH (1.0 mmol) and acetophenone (**2a**, 1.0 mmol, 0.120 g) were added and the tube was sealed and stirred at 60 °C for 48 hours. The reaction was quenched with water (10 mL) and extracted with Et<sub>2</sub>O (3 x 20 mL). The collected organic layer was dried over MgSO<sub>4</sub>. After filtration, the filtrate was evaporated in vacuo to give a residue, which was dissolved in CDCl<sub>3</sub> and analyzed by <sup>1</sup>H NMR. Further purification was performed by distillation under reduced pressure and recycling preparative HPLC to separate stereoisomers.

Scheme 2, ep2. In a sealed tube with a septum rubber,  $InCl_3$  (0.2 mmol, 44.2 mg) and NaOMe (0.2 mmol, 10.8 mg) were introduced and dried under reduced pressure with heating by a heat-gun followed by refilling with Ar. Then THF (2 mL) was poured into the tube and the mixture was stirred at room temperature for 10 min. After MePhSiH<sub>2</sub> (1.1 mmol, 0.134 g) was added, 2,3-dimethyl-1,3-butadiene (1c, 20 mmol) was poured into the mixture. Then MeOH (1.0 mmol) and ketone 2 (1.0 mmol) were added and the tube was sealed and stirred at 60 °C for 48 hours. The reaction was quenched with water (10 mL) and extracted with Et<sub>2</sub>O (3 x 20 mL). The collected organic layer was dried over MgSO<sub>4</sub>. After filtration, the filtrate was evaporated in vacuo to give a residue, which was dissolved in CDCl<sub>3</sub> and analyzed by <sup>1</sup>H NMR. Further purification was performed by distillation under reduced pressure and recycling preparative HPLC to separate stereoisomers.

Scheme 4, ep1. In a sealed tube with a septum rubber,  $InCl_3$  (0.2 mmol, 44.2 mg) and NaOMe (0.2 mmol, 10.8 mg) were introduced and dried under reduced pressure with heating by a heat-gun followed by refilling with Ar. Then THF (2 mL) was poured into the tube and the mixture was stirred at room temperature for 10 min. After MePhSiH<sub>2</sub> (1.1 mmol, 0.134 g) was added, 1,3-butadiene (1a, 20 mmol) was poured into the mixture. Then CD<sub>3</sub>OD or CH<sub>3</sub>OH (1.0 mmol) and acetophenone (2a, 1.0 mmol, 0.120 g) were added and the tube was sealed and stirred at 60 °C for 30 min. The reaction was quenched with water (10 mL) and extracted with Et<sub>2</sub>O (3 x 20 mL). The collected organic layer was dried over MgSO<sub>4</sub>. After filtration, the filtrate was evaporated in vacuo to give a residue, which was dissolved in CDCl<sub>3</sub> and analyzed by <sup>1</sup>H NMR (3aa-OD; 25%, 3aa; 27%).

**Scheme 4, ep2.** In a sealed tube with a septum rubber,  $InCl_3$  (0.2 mmol, 44.2 mg) and NaOMe (0.2 mmol, 10.8 mg) were introduced and dried under reduced pressure with heating by a heat-gun followed by refilling with Ar. Then THF (2 mL) was poured into the tube and the mixture was stirred at room temperature for 10 min. After  $Ph_2SiD_2$  or  $Ph_2SiH_2$  (1.1 mmol) was added, 1,3-butadiene (1a, 20 mmol) was poured into the mixture. Then MeOH (1.0 mmol) and acetophenone (2a, 1.0 mmol, 0.120 g) were added and the tube was sealed and stirred at 60 °C for 45 min. The reaction was quenched with water (10 mL) and extracted with  $Et_2O$  (3 x 20 mL). The collected organic layer was dried over MgSO<sub>4</sub>. After filtration, the filtrate was evaporated in vacuo to give a residue, which was dissolved in CDCl<sub>3</sub> and analyzed by <sup>1</sup>H NMR. The reaction batch was performed three times and the yields were calculated on average (3aa-CH<sub>2</sub>D; 25%, 3aa; 34%).

The amount of deuterium into the product **3aa-CH<sub>2</sub>D** was determined by <sup>1</sup>H NMR as shown below. The number of H in f of the product **3aa** is 3. The product **3aa-CH<sub>2</sub>D** has 2.03 in f. This indicates 0.97D was captured in f.



Scheme 5, ep1. In a sealed tube with a septum rubber,  $InCl_3$  (0.2 mmol, 44.2 mg) and NaOMe (0.2 mmol, 10.8 mg) were introduced and dried under reduced pressure with heating by a heat-gun followed by refilling with Ar. Then THF (2 mL) was poured into the tube and the mixture was stirred at room temperature for 10 min. After MePhSiH<sub>2</sub> (1.1 mmol, 0.134 g) was added, vinyl cyclopropane 4 (2.0 mmol, 0.425 g) was added to the mixture. Then acetophenone (2a, 1.0 mmol, 0.120 g), MeOH (1.0 mmol), and V-70 L (0.1 mmol, 30.8 mg) were added and the tube was sealed and stirred at 40 °C for 24 hours. The reaction was quenched with water (10 mL)

and extracted with  $Et_2O$  (3 x 20 mL). The collected organic layer was dried over MgSO<sub>4</sub>. After filtration, the filtrate was evaporated in vacuo to give a residue, which was dissolved in CDCl<sub>3</sub> and analyzed by <sup>1</sup>H NMR.

Scheme 5, ep2. According to Buchwald's previous work,<sup>2</sup> Cu(OAc)<sub>2</sub> (9.2 mg, 0.05 mmol) and (*S*,*S*)-Ph-BPE (30.4 mg, 0.06 mmol) was charged in a sealed tube and dissolved in toluene (0.3 mL). Then Me(OMe)<sub>2</sub>SiH (4.0 mmol, 0.425 g) and vinyl cyclopropane 4 (2.0 mmol, 0.425 g) was added. After cooling at 0 °C, to the mixture was added dropwise acetophenone (2a, 1.0 mmol, 0.120 g) dissolved in toluene (1 mL) using a syringe pump and stirred for 12 hours. The reaction was quenched with NH<sub>4</sub>F in MeOH (10 mL) and water (10 mL) and extracted with Et<sub>2</sub>O (3 x 20 mL). The collected organic layer was dried over MgSO<sub>4</sub>. After filtration, the filtrate was evaporated in vacuo to give a residue, which was dissolved in CDCl<sub>3</sub> and analyzed by <sup>1</sup>H NMR.

### 4. Product Data

#### 3-Methyl-2-phenylpent-4-en-2-ol (3aa)<sup>3</sup>

Isolated as mixture of diastereomers

Shape: colorless liquid

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 7.45-7.40 (m, syn+anti, 2H, Ph), 7.36-7.32 (m, syn+anti, 2H, Ph), 7.26-7.22 (m, syn+anti, 1H, Ph), 5.86-5.77 (m, syn, 1H, H<sub>2</sub>C=C<u>H</u>), 5.74-5.67 (m, anti, 1H, H<sub>2</sub>C=C<u>H</u>)\*, 5.14-5.08 (m, syn+anti, 2H, <u>*H*</u><sub>2</sub>C=CH), 2.62-2.52 (m, 1H, H<sub>2</sub>C=CHC<u>H</u>), 1.98 (s, anti, 1H, OH)\*, 1.87 (s, 1H, syn, OH), 1.53 (s, syn+anti, 3H, C<u>*H*</u><sub>3</sub>COH), 0.97 (d, *J* = 6.8 Hz, anti, 3H, H<sub>2</sub>C=CHCC<u>*H*</u><sub>3</sub>)\*, 0.86 (d, *J* = 7.0 Hz, syn, 3H, H<sub>2</sub>C=CHCHC<u>*H*</u><sub>3</sub>) <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ 146.9, 146.8\*, 139.8 (syn+anti), 127.9, 127.8\*, 126.5\*, 126.4, 125.4\*, 125.2, 116.4\*, 116.3, 75.8, 75.6\*, 48.9, 48.6\*, 28.5, 25.8\*, 14.7, 14.0\*

\* Mark corresponds to anti isomer.

MS (CI, 200 eV) m/z 159 (521), 160 (72), 121 (41)

HRMS calcd for [C<sub>12</sub>H<sub>16</sub>O-OH]<sup>+</sup>: 159.1168, found: m/z 159.1173 (CI)

<sup>1</sup>H NMR (syn isomer)





# <sup>1</sup>H NMR (syn+anti isomer)



# <sup>13</sup>C NMR (syn+anti isomer)



#### 2-(4-Chlorophenyl)-3-methylpent-4-en-2-ol (3ab)<sup>4</sup>



known compound

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ7.37-7.28 (m, syn+anti, 4H, Ph), 5.84-5.75 (m, syn, 1H, H<sub>2</sub>C=C<u>H</u>), 5.72-5.63 (m, anti, 1H, H<sub>2</sub>C=C<u>H</u>)\*, 5.15-5.08 (m, syn+anti, 2H, <u>H</u><sub>2</sub>C=CH), 2.58-2.47 (m, syn+anti, 1H, CH<sub>3</sub>C<u>H</u>), 1.97 (s, anti, 1H, OH)\*, 1.85 (s, 1H, syn, OH), 1.51 (s, syn+anti, 3H, C<u>H</u><sub>3</sub>COH), 0.96 (d, *J*= 7.0 Hz, anti, 3H, C<u>H</u><sub>3</sub>CH)\*, 0.85 (d, *J*= 6.8 Hz, syn, 3H, C<u>H</u><sub>3</sub>CH)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ145.4, 145.3\*, 139.4, 139.3\*, 132.2, 132.0\*, 127.9 (syn+anti), 127.0\*, 126.7,

116.8\*, 116.6, 75.5, 75.4\*, 48.8 (syn+anti), 28.4, 25.7\*, 14.6, 14.0\*

MS (CI, 200 eV) m/z 193 (645), 195 (200), 194 (76), 155 (42), 196 (30)

HRMS calcd for [C<sub>12</sub>H<sub>15</sub>OCl-OH]<sup>+</sup>: 193.0779, found: m/z 193.0787 (CI)



### <sup>1</sup>H NMR (major+minor isomer)





# <sup>13</sup>C NMR (major+minor isomer)



2-(4-Bromophenyl)-3-methylpent-4-en-2-ol (3ac)<sup>5</sup>



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ7.46-7.26 (m, 4H, Ph, syn+anti), 5.84- 5.75 (m, 1H, H<sub>2</sub>C=C<u>*H*</u>, syn), 5.70- 5.62 (m, 1H, <u>*H*</u><sub>2</sub>C=CH, anti)\*, 5.15-5.01 (m, 2H, <u>*H*</u><sub>2</sub>C=CH, syn+anti), 2.59- 2.46 (m, 1H, CH<sub>3</sub>C<u>*H*</u>, syn+anti), 1.97 (br, 1H, OH, anti)\*, 1.87 (br, 1H, OH, syn), 1.50 (s, 3H, C<u>*H*</u><sub>3</sub>COH, syn+anti), 0.96 (d, *J* = 6.9 Hz, 3H, C<u>*H*</u><sub>3</sub>CH, anti)\*, 0.85 (d, *J* = 7.0 Hz, 3H, C<u>*H*</u><sub>3</sub>CH, syn) <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ146.0, 139.4, 130.9, 127.4\*, 127.1, 120.6\*, 120.4, 117.1\*, 116.8, 75.5, 48.7, 28.5, 25.8\*, 14.6, 14.0\* (Five peaks overlap) \* Mark corresponds to anti isomer. MS (CI, 200 eV) m/z 237 (325), 239 (306), 240 (41), 201 (21)

HRMS calcd for [C<sub>12</sub>H<sub>15</sub>OBr-OH]<sup>+</sup>: 237.0273, found: m/z 237.0273 (CI)

<sup>1</sup>H NMR (syn isomer)



### <sup>1</sup>H NMR (syn+anti isomer)



<sup>13</sup>C NMR (syn isomer)



# <sup>13</sup>C NMR (syn+anti isomer)



#### 4-(2-Hydroxy-3-methylpent-4-en-2-yl)benzonitrile (3ad)



#### major isomer

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 7.63 (d, J = 8.7 Hz, 2H, Ph), 7.53 (d, J = 8.7 Hz, 2H, Ph), 5.86-5.77 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.19-5.11 (m, 2H, <u>H</u><sub>2</sub>C=CH), 2.57-2.50 (m, 1H, CH<sub>3</sub>C<u>H</u>), 1.89 (s, 1H, OH), 1.54 (s, 3H, C<u>H</u><sub>3</sub>COH), 0.83 (d, J = 7.0 Hz, 3H, C<u>H</u><sub>3</sub>CH)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) : δ152.5, 138.8, 131.7, 126.1, 118.9, 117.2, 110.2, 75.7, 48.6, 28.5, 14.5 bp: 110 °C /0.29 torr

#### minor isomer

<sup>1</sup>H NMR (CDCl3, 400 MHz)  $\delta$ 7.63 (d, J = 8.7 Hz, 2H, Ph), 7.55 (d, J = 8.7 Hz, 2H, Ph), 5.67-5.58 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.12-5.07 (m, 2H, <u>H</u><sub>2</sub>C=CH), 2.60-2.52 (m, 1H, CH<sub>3</sub>C<u>H</u>), 2.10 (s, 1H, OH), 1.54 (s, 3H, C<u>H</u><sub>3</sub>COH),0.99 (d, J = 6.8 Hz, 3H, C<u>H</u><sub>3</sub>CH)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ152.5, 138.9, 131.7, 126.4, 118.9, 117.5, 110.4, 75.6, 48.7, 26.0, 13.9

Properties of mixture of diastereomers: IR (neat) 3491 cm<sup>-1</sup> (OH), 2228 cm<sup>-1</sup> (CN)

MS (CI, 200 eV) m/z 202 (M+1), 205, 193

HRMS: (CI+, 200 eV) Calculated (C13H16NO) 202.1232 (M+1) Found: 202.1235





<sup>1</sup>H NMR (minor isomer)



### <sup>13</sup>C NMR (minor isomer)



#### 3-Methyl-2-(p-tolyl)pent-4-en-2-ol (3ae)



colorless liquid IR (neat) 3471 cm<sup>-1</sup> (OH), bp: 105 °C /0.25 torr MS (CI, 200 eV) m/z 191 (M + 1), 173 (100) HRMS: (CI+, 200 eV) Calculated (C<sub>13</sub>H<sub>19</sub>O) 191.1436 (M +1) Found: 191.1436 Anal. calcd for C<sub>13</sub>H<sub>18</sub>O: C, 82.06; H, 9.54 found: C, 81.71; H, 9.55; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) : 87.33–7.26 (m, major+minor, 2H, Ph), 7.15-7.13 (m, major+minor , 2H, Ph), 5.85-5.67 (m, major+minor, 1H, H<sub>2</sub>C=C<u>H</u>), 5.13-5.07(m, major+minor, 2H, <u>H</u><sub>2</sub>C=CH), 2.62-2.49 (m, major+minor, 1H, CH<sub>3</sub>C<u>H</u>), 2.34 (s, major+minor, 3H, C<sub>6</sub>H<sub>4</sub>C<u>H</u><sub>3</sub>), 1.94 (s, minor, OH), 1.83 (s, 1H, OH), 1.51 (s, major+minor, 3H,C<u>H</u><sub>3</sub>COH), 0.96 (d, minor, *J* = 6.8 Hz, 3H, C<u>H</u><sub>3</sub>CH), 0.87 (d, *J* = 7.0 Hz, 3H, C<u>H</u><sub>3</sub>CH) <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 Hz): 8144.0 (major+minor), 140.0 (major+minor), 136.0\*, 135.8, 128.5 ( major+minor), 125.4\*, 125.1, 116.4\*, 116.1, 75.6 (major+minor) , 50.0, 48.7\*, 28.4, 25.9\*, 20.9 (major+minor r), 14.8, 14.1\*





<sup>1</sup>H NMR (major+minor isomer)



# <sup>13</sup>C NMR (major+minor isomer)



2-(4-Methoxyphenyl)-3-methylpent-4-en-2-ol (3af)<sup>4</sup>



### major isomer

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.33-7.30 (m, 2H, Ph), 6.89-6.86 (m, 2H, Ph), 5.83-5.74 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.11-5.01 (m, 2H, <u>*H*</u><sub>2</sub>C=CH), 3.81 (s, 3H, OMe), 2.55-2.48 (m, 1H, C<u>*H*</u><sub>3</sub>CH), 1.85 (s, 1H, OH), 1.51 (s, 3H, C<u>*H*</u><sub>3</sub>COH), 0.88 (d, *J* = 6.8 Hz, 3H, C<u>*H*</u><sub>3</sub>CH)

<sup>13</sup>C NMR (CDCl<sub>3</sub>,100 Hz) δ158.0, 140.0, 139.0, 126.4, 116.2, 113.1, 75.4, 55.2, 49.0, 28.3, 14.8

### minor isomer

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 7.37-7.33 (m, 2H, Ph), 6.89-6.85 (m, 2H, Ph), 5.72-5.68 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.15-5.01 (m, 2H, <u>*H*</u><sub>2</sub>C=CH), 3.81 (s, 3H, OMe), 2.60-2.53 (m, 1H, CH<sub>3</sub>C<u>H</u>), 1.93 (s, 1H, OH), 1.51 (s, 3H, C<u>*H*</u><sub>3</sub>COH), 0.94 (d, *J* = 6.8 Hz, 3H, C<u>*H*</u><sub>3</sub>CH)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ158.1, 140.1, 139.1, 126.6, 116.5, 113.1, 75.4, 55.1, 49.0, 25.7, 14.3

MS (CI, 200 eV) m/z 189 (250), 245 (38), 190 (37)

HRMS calcd for [C<sub>13</sub>H<sub>18</sub>O<sub>2</sub>-OH]<sup>+</sup>: 189.1274, found: m/z 189.1280 (CI)







# <sup>13</sup>C NMR (minor isomer)



#### 4-Methyl-3-phenylhex-5-en-3-ol (3ag)<sup>6</sup>

#### major isomer

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 7.36-7.31 (m, 4H, Ph), 7.25-7.21 (m, 1H, Ph), 5.89-5.80 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.16-5.11 (m, 2H, <u>*H*</u><sub>2</sub>C=CH), 2.61-2.54 (m, 1H, H<sub>2</sub>C=CHC<u>H</u>), 1.95- 1.82 (m, 2H, CH<sub>3</sub>C<u>*H*</u><sub>2</sub>), 1.80 (s, 1H, OH), 0.81 (d, *J* = 7.0 Hz, 3H, H<sub>2</sub>C=CHCHC<u>*H*</u><sub>3</sub>), 0.68 (t, *J* = 7.4 Hz, 3H, C<u>*H*</u><sub>3</sub>CH<sub>2</sub>) <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ 144.3, 140.0, 127.7, 126.1, 125.7, 116.2, 78.3, 48.2, 33.3, 14.9, 7.7

#### minor isomer

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 7.39-7.31 (m, 4H, Ph), 7.26-7.21 (m, 1H, Ph), 5.67-5.58 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.08-5.03 (m, 2H, <u>H</u><sub>2</sub>C=CH), 2.69-2.62 (m, 1H, H<sub>2</sub>C=CHC<u>H</u>), 2.02- 1.93 (m, 1H, CH<sub>3</sub>C<u>H</u><sub>2</sub>), 1.88- 1.79 (m, 1H, CH<sub>3</sub>C<u>H</u><sub>2</sub>), 1.81 (s, 1H, OH), 1.03 (d, *J* = 6.8 Hz, 3H, H<sub>2</sub>C=CHCHC<u>H</u><sub>3</sub>), 0.73 (t, *J* = 7.4 Hz, 3H, C<u>H</u><sub>3</sub>CH<sub>2</sub>) <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ 144.6, 140.0, 127.7, 126.3, 126.1, 116.3, 78.1, 47.5, 31.3, 13.3, 7.8 MS (CI, 200 eV) m/z 173 (622), 174 (80), 135 (39) HRMS calcd for [C<sub>13</sub>H<sub>18</sub>O-OH]<sup>+</sup>: 173.1325, found: m/z 173.1331 (CI)





<sup>1</sup>H NMR (minor isomer)



### <sup>13</sup>C NMR (minor isomer)



3-Methyl-4-phenylhept-1-en-4-ol (3ah)

Isolated as mixture of diastereomers

colorless liquid

IR (neat) 3507 cm<sup>-1</sup> (OH) bp: 90 °C /0.23 torr

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta7.37-7.31$  (m, majo+minor, 4H, Ph), 7.26-7.19 (m, major+minor, 1H, Ph), 5.89-5.80 (m, major, 2H, H<sub>2</sub>C=C<u>H</u>), 5.66-5.57 (m, minor, 1H, H<sub>2</sub>C=C<u>H</u>)\*, 5.16-5.12 (m, major, 2H, <u>H<sub>2</sub>C=CH</u>), 5.07-5.03 (m, minor, 2H, <u>H<sub>2</sub>C=CH</u>)\*, 2.68-2.63 (m, minor, 1H, H<sub>2</sub>C=CHC<u>H</u>)\*, 2.60-2.52 (m, major, 1H, H<sub>2</sub>C=CHC<u>H</u>), 1.93-1.72 (m, major+minor, 2H+1H, CH<sub>3</sub>CH<sub>2</sub>C<u>H<sub>2</sub> or CH<sub>3</sub>C<u>H<sub>2</sub>+OH</u>), 1.32-1.18 (m, major+minor, 1H, CH<sub>3</sub>CH<sub>2</sub>C<u>H<sub>2</sub> or CH<sub>3</sub>CH<sub>2</sub>+OH</u>), 1.32-1.18 (m, major+minor, 1H, CH<sub>3</sub>CH<sub>2</sub>C<u>H<sub>2</sub> or CH<sub>3</sub>CH<sub>2</sub>+OH</u>), 0.99-0.89 (m, major+minor, 1H, COHC<u>H<sub>2</sub> or CH<sub>3</sub>C<u>H<sub>2</sub>+OH</u>), 0.87-0.80 (m, major+minor, 6H, C<u>H<sub>3</sub>CH<sub>2</sub>+CH<sub>3</sub>CH<sub>2</sub>)</u></u></u>

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ145.0\*, 144.8, 140.0 (major+minor), 127.8, 127.7\*, 126.2\*, 126.1, 125.8\*, 125.6, 116.2 (major+minor), 78.1, 77.9\*, 48.5, 47.7\*, 43.2, 41.2\*, 16.7 (major+minor), 14.8, 14.4 (major+minor), 13.2\*

\* Mark corresponds to minor isomer.

HRMS calcd for  $C_{14}H_{21}O$ : 205.1592, found: m/z 205.1589 (CI, M<sup>+</sup>+1, +0.3 mmu) MS: (CI+, 70 eV) m/z 204 (M<sup>+</sup>+1), 187 (100)





<sup>13</sup>C NMR (major isomer)



# <sup>13</sup>C NMR (major+minor isomer)



3-Hydroxy-4-methyl-3-phenyl-hex-5-enenitrile (3ai)

Isolate as mixture of diastereomers

colorless liquid

IR (neat) 2255 cm<sup>-1</sup> (CN), 3548 cm<sup>-1</sup> (OH)

MS (CI, 200eV) m/z 202 (M<sup>+</sup>+1, 655), bp: 116 °C /1.4 torr

HRMS calcd for C<sub>13</sub>H<sub>15</sub>NO: 201.1154, found: m/z 202.1234 (CI, M<sup>+</sup>+1, +0.2 mmu)

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ7.43–7.31 (m, 5H, Ph, major+minor), 5.84- 5.75 (m, 1H, H<sub>2</sub>C=C<u>H</u>, major), 5.60-5.51 (m, 1H, H<sub>2</sub>C=C<u>H</u>, minor)\*, 5.28-5.23 (m, 2H, <u>H</u><sub>2</sub>C=CH, major), 5.18- 5.14 (m, 2H, <u>H</u><sub>2</sub>C=CH, minor)\*, 2.94 (m, 1H, C<u>H</u><sub>2</sub>CN, minor), 2.89 (m, 1H, C<u>H</u><sub>2</sub>CN, major), 2.80-2.71 (m, 1H, CH<sub>3</sub>C<u>H</u>, major+minor), 2.51-2.49 (br, 1H, OH, minor)\*, 2.36 (s, 1H, OH, major), 0.99 (d, *J*=7.0 Hz, 3H, CH<sub>3</sub>, minor)\*, 0.88 (d, *J*=7.0 Hz, 3H, CH<sub>3</sub>, major)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ142.1, 138.2\*, 138.0, 128.5, 128.2\*, 127.8\*, 127.8, 125.5\*, 125.1, 118.2, 117.8\*, 117.6\*, 117.3, 76.2, 76.1\*, 47.3, 47.0\*, 31.1, 29.7\*, 14.8, 13.6\*

\* Mark corresponds to minor isomer.



### <sup>1</sup>H NMR (major+minor isomer)





# <sup>13</sup>C NMR (major+minor isomer)



1-Bromo-3-methyl-2-phenyl-pen-4-tene-2-ol (3aj)

Isolate as a mixture of diastereomers

colorless liquid

IR (neat) 3548 cm<sup>-1</sup> (OH)

MS (CI, 200eV) m/z 255 (M<sup>+</sup>+1, 4.30), bp: 110 °C /0.12 torr

HRMS calcd for C<sub>12</sub>H<sub>15</sub>BrO: 254.0306, found: m/z 255.0392 (CI, M<sup>+</sup>+1, +0.7 mmu)

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ7.41-7.25 (m, 5H, Ph, major+minor), 5.91-5.82 (m, 1H, H<sub>2</sub>C=C<u>*H*</u>, major), 5.65-5.56 (m, 1H, H<sub>2</sub>C=C<u>*H*</u>, minor)\*, 5.15-5.10 (m, 2H, <u>*H*<sub>2</sub>C</u>=CH, major+minor), 3.99-3.85 (m, 2H, C<u>*H*<sub>2</sub>Br, minor)\*, 3.92 (d, *J* =10.6 Hz, 1H, C<u>*H*</u>HBr, major), 3.86 (d, *J* = 10.6 Hz, 1H, CH<u>*H*</u>Br, major), 2.74 (m, 1H, CH<sub>3</sub>C<u>*H*</u>, minor)\*, 2.64 (m, 1H, CH<sub>3</sub>C<u>*H*</u>, major), 2.55 (s, 1H, OH, minor)\*, 2.50 (s, 1H, OH, major), 0.95 (d, *J* = 6.8 Hz, 3H, CH<sub>3</sub>, minor)\*, 0.89 (d, *J* = 7.0 Hz, 3H, CH<sub>3</sub>, major)</u>

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ142.9, 139.1, 139.0\*, 128.1, 127.8\*, 127.3\*, 127.2, 126.3\*, 125.6, 116.7\*, 116.6, 76.9, 47.6, 46.8\*, 45.2, 44.5\*, 15.9, 14.5\*

\* Mark corresponds to minor isomer.



# <sup>1</sup>H NMR (major+minor isomer)





# <sup>13</sup>C NMR (major+minor isomer)



#### 1-Methoxy-3-methyl-2-phenylpent-4-en-2-ol (3ak)

colorless liquid IR (neat) 3555 cm<sup>-1</sup> (OH), bp: 210 °C /1.0 torr MS (CI, 200 eV) m/z 207 (M<sup>+</sup>+1), 189 (100) HRMS calcd for C<sub>13</sub>H<sub>18</sub>O<sub>2</sub>: 206.1307, found: m/z 207.1386 (CI, M<sup>+</sup>+1, +0.1 mmu) <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ7.42 (m, 2H, Ph, major+minor), 7.35 (m, 2H, Ph, major+minor) 7.24 (m, 1H, Ph, major+minor), 5.94-5.86 (m, 1H, H<sub>2</sub>C=C<u>H</u>, major), 5.67-5.58 (m, 1H, H<sub>2</sub>C=C<u>H</u>, minor), 5.08-5.01 (m, 2H, H<sub>2</sub>C=CH, major+minor), 3.76 (d, *J*= 9.2 Hz, 1H, CHHOMe, minor)\*, 3.73 (d, *J*= 9.4 Hz, 1H, CHHOMe, major),

3.68 (d, *J* = 9.2 Hz, 1H, C<u>*H*</u>HOMe, minor)\* 3.64 (d, *J*= 9.4 Hz, 1H, CH<u>*H*</u>OMe, major), 3.36 (s, 3H, OMe, minor)\*, 3.30 (s, 3H, OMe, major), 2.86 (s, 1H, OH, minor)\*, 2.78 (s, 1H, OH, major), 2.70-2.62 (m, 1H, CH<sub>3</sub>C<u>*H*</u>, minor)\*, 2.57-2.50 (m, 1H, CH<sub>3</sub>C<u>*H*</u>, major), 0.92 (d, *J*=7.0 Hz, 3H, C<u>*H*</u><sub>3</sub>CH, minor)\*, 0.82 (d, *J*=7.0 Hz, 3H, C<u>*H*</u><sub>3</sub>CH, major)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ143.8, 142.3\*, 140.0, 139.8\*, 127.9, 127.6\*, 126.8\*, 126.7, 126.1\*, 125.6, 115.7\*, 115.3, 78.6, 77.3, 77.0\*, 59.3, 46.0, 45.9\*, 14.8, 13.9\* (Two peaks overlap)



# <sup>1</sup>H NMR (major+minor isomer)





# <sup>13</sup>C NMR (major+minor isomer)



#### Ethyl 3-hydroxy-4-methyl-3-phenylhex-5-enoate (3al)

#### Major isomer

colorless liquid

IR (neat) 3487 cm<sup>-1</sup> (OH), 1707 cm<sup>-1</sup> (C=O) bp: 150 °C /2.5 torr

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 7.41-7.38 (d, 2H, Ph), 7.34-7.30 (m, 2H, Ph), 7.24-7.20 (m, 1H, Ph), 5.96-5.87 (m, 1H, H<sub>2</sub>C=C<u>*H*</u>), 5.10-5.05 (m, 2H, <u>*H*</u><sub>2</sub>C=CH), 4.41 (d, 1H, OH), 3.93 (m, 2H, OCH<sub>2</sub>), 2.88 (s, 2H, C<u>*H*</u><sub>2</sub>C=O), 2.44-2.36 (m, 1H, CH<sub>3</sub>C<u>*H*</u>), 1.00 (t, *J* = 7.1 Hz, 3H, OCH<sub>2</sub>C<u>*H*</u><sub>3</sub>), 0.82 (d, *J* = 6.8Hz, 3H, C<u>*H*</u><sub>3</sub>CH)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ173.4, 144.7, 140.1, 127.9, 126.7, 125.5, 115.9, 76.5, 60.6, 49.4, 44.1, 14.7, 13.8 Anal. calcd for C<sub>15</sub>H<sub>20</sub>O<sub>3</sub>: C, 72.55; H, 8.12, found: C, 72.35; H, 8.16

#### **Minor isomer**

colorless liquid

IR (neat) 3493 cm<sup>-1</sup> (OH), 1710 cm<sup>-1</sup> (C=O)

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ 7.39-7.36 (m, 2H, Ph), 7.33-7.29 (m, 2H, Ph), 7.25-7.21 (m, 1H, Ph), 5.70-5.61 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.04-4.97 (m, 2H, <u>H</u><sub>2</sub>C=CH), 4.46 (s, 1H, OH), 4.00 (q, *J* = 7.2 Hz, 2H, OCH<sub>2</sub>), 3.12 (d, *J* = 15.9 Hz, 1H, C<u>H</u>HC=O), 2.80 (d, *J* = 15.9 Hz, 2H, CH<u>H</u>C=O), 2.57-2.50 (m, 1H, CH<sub>3</sub>C<u>H</u>), 1.08 (t, *J* = 7.1 Hz, 3H, OCH<sub>2</sub>C<u>H</u><sub>3</sub>), 0.92 (d, *J* = 6.8Hz, 3H, C<u>H</u><sub>3</sub>CH)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ173.2, 143.6, 139.6, 127.7, 126.8, 126.0, 115.9, 76.5, 60.6, 48.6, 42.5, 14.0, 13.9 Anal. calcd for C<sub>15</sub>H<sub>20</sub>O<sub>3</sub>: C, 72.55; H, 8.12, found: C, 72.52; H, 8.41

Properties for a mixture of diastereomer

HRMS calcd for  $C_{15}H_{21}O_3$ : 249.1491, found: m/z 249.1486 (CI, M<sup>+</sup>+1, -0.5 mmu) MS (CI, 200 eV) m/z 105 (143), 193 (86), 147 (23)

### <sup>1</sup>H NMR (major isomer)





# <sup>13</sup>C NMR (major isomer)



# <sup>13</sup>C NMR (minor isomer)



#### 3,4-Dimethyl-1-phenylhex-5-en-3-ol (3am)<sup>7</sup>

$$6 \xrightarrow{5} 4 \xrightarrow{2} 0 H$$
  
 $6 \xrightarrow{4} 3 \xrightarrow{2} Ph$ 

#### Major isomer

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) :  $\delta7.30-7.26$  (m, 2H, Ph), 7.22–7.16 (m, 3H, Ph), 5.91-5.81 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.17-5.12 (m, 2H, <u>H</u><sub>2</sub>C=CH), 2.74-2.69 (m, 2H, C<u>H</u><sub>2</sub>CH<sub>2</sub>Ph), 2.37-2.30 (m, 1H, CH<sub>3</sub>C<u>H</u>), 1.81-1.76 (m, 2H, C<u>H</u><sub>2</sub>Ph), 1.55 (s, 1H, OH), 1.18 (s, 3H, C<u>H</u><sub>3</sub>COH), 1.05 (d, *J* =6.8 Hz, 3H, C<u>H</u><sub>3</sub>CH), <sup>13</sup>C NMR (CDCl<sub>3</sub>,100 Hz):  $\delta142.7$ , 140.1, 128.3, 125.6, 116.6, 73.5, 47.4, 42.0, 29.8, 23.5, 14.9 MS (CI, 200 eV) m/z 187 (225), 131 (86), 188 (35), 117 (33) HRMS calcd for [C<sub>14</sub>H<sub>20</sub>O-OH]<sup>+</sup>: 187.1481, found: m/z 187.1484 (CI)

#### **Minor isomer**

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) : δ7.30–7.26 (m, 2H, Ph), 7.20–7.16 (m, 3H, Ph), 5.84-5.75 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.14-5.01 (m, 2H, <u>*H*</u><sub>2</sub>C=CH), 2.80-2.61 (m, 2H, C<u>*H*</u><sub>2</sub>CH<sub>2</sub>Ph), 2.36-2.28 (m, 1H, CH<sub>3</sub>C<u>*H*</u>), 1.82-1.66 (m, 2H, C<u>*H*</u><sub>2</sub>Ph), 1.49 (s, 1H, OH), 1.21 (s, 3H, C<u>*H*</u><sub>3</sub>CH), 1.06 (d, *J* =7.0 Hz, 3H, C<u>*H*</u><sub>3</sub>CH), <sup>13</sup>C NMR (CDCl<sub>3</sub>,100 Hz): δ142.8, 140.2, 128.4, 128.3, 125.7, 116.3, 73.7, 47.5, 42.2, 29.8, 23.8, 14.6



### <sup>1</sup>H NMR (minor isomer)





# <sup>13</sup>C NMR (minor isomer)



1-(But-3-en-2-yl)cyclohexan-1-ol (3an)<sup>3</sup>



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta 5.88-5.79$  (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.11-5.04 (m, 2H, <u>H</u><sub>2</sub>C=CH), 2.21-2.14 (m, 1H, CH<sub>3</sub>C<u>H</u>), 1.61-1.35 (m, 10H, Cy), 1.22-1.12 (m, 1H, Cy or OH), 1.02 (d, *J* = 6.8 Hz, 3H, C<u>H</u><sub>3</sub>CH) <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta 140.4$ , 115.8, 72.4, 48.3, 34.9, 34.3, 25.8, 21.8, 14.1 MS (CI, 200 eV) m/z 137 (297), 138 (38), 99 (21) HRMS calcd for [C<sub>10</sub>H<sub>18</sub>O-OH]<sup>+</sup>: 137.1325, found: m/z 137.1332 (CI+)





#### 3-Methyl-2-(1-naphthyl)-4-pentene-2-ol (3ao)



Isolated as mixture of diastereomers

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ8.86 (m, 1H, Ar, major,), 8.64 (m, 1H, Ar, minor,)\*, 7.88-7.39 (m, major+minor, 6H, Ar), 5.97-5.89 (m, major, 1H, H<sub>2</sub>C=C<u>H</u>), 5.87-5.78 (m, minor, 1H, H<sub>2</sub>C=C<u>H</u>)\*, 5.28-5.21 (m, major, 2H, <u>*H*</u><sub>2</sub>C=CH), 5.04-4.97 (m, minor, 2H, <u>*H*</u><sub>2</sub>C=CH)\*, 3.44-3.30 (m, major+minor, 1H, CH<sub>3</sub>C<u>*H*</u>), 2.29 (s, major, 1H, OH), 2.28 (s, minor, 1H, OH)\*, 1.77 (s, 3H, minor, C<u>*H*</u><sub>3</sub>COH)\*, 1.74 (s, major, 3H, C<u>*H*</u><sub>3</sub>COH), 0.99 (d, *J* = 6.8 Hz, minor, 3H, C<u>*H*</u><sub>3</sub>CH)\*, 0.85 (d, *J* = 6.8 Hz, major, 3H, C<u>*H*</u><sub>3</sub>CH)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ142.4\*, 141.7, 140.0\*, 139.7, 134.9, 134.8\*, 130.7, 130.5\*, 129.1 (major+minor), 128.5, 128.3\*, 127.1, 126.5\*, 125.1 (major+minor), 125.0, 124.9\*, 124.7 (major+minor), 124.4, 124.3\*, 116.8, 115.5\*, 78.0, 77.5\*, 46.0\*, 45.9, 27.1\*, 25.0, 14.9, 14.0\* 140.0, 127.8, 127.7\*, 126.2\*, 126.1, 125.8\*, 125.6, 116.2 (major+minor), 78.1, 77.9\*, 48.5, 47.7\*, 43.2, 41.2\*, 16.7 (major+minor), 14.8, 14.4 (major+minor), 13.2\*

\* Mark corresponds to minor isomer.

MS (CI, 200 eV) m/z 171 (180), 172 (23)

HRMS calcd for [C<sub>16</sub>H<sub>18</sub>O+1]<sup>+</sup>: 227.1436, found: m/z 224.1437 (CI)



<sup>13</sup>C NMR (major isomer)





# <sup>13</sup>C NMR (major+minor isomer)



3-Methyl-2-(naphthalen-1-yl)pent-4-en-2-ol (3ap)



#### **Major** isomer

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) :  $\delta$ 7.89–7.79 (m, 4H, Ar), 7.50-7.43 (m, 3H, Ar), 5.91-5.82 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.16-5.10 (m, 2H, <u>H</u><sub>2</sub>C=CH), 2.70-2.62 (m, 1H, CH<sub>3</sub>C<u>H</u>), 2.03 (br, 1H, OH), 1.60 (s, 3H, C<u>H</u><sub>3</sub>COH), 0.87 (d, J = 7.0 Hz, 3H, C<u>H</u><sub>3</sub>CH)

(CDCl<sub>3</sub>,

 $^{13}C$ 

100

Hz):δ144.4, 139.7, 133.0, 132.1, 128.1, 127.5, 127.4, 125.9, 125.6, 123.8, 123.7, 116.4, 75.9, 48.6, 28.6, 14.8 MS (CI, 200 eV) m/z 209 (299), 210 (49), 171 (29)

HRMS calcd for [C<sub>16</sub>H<sub>18</sub>O-OH]<sup>+</sup>: 209.1328, found: m/z 209.1330 (CI)

NMR

#### **Minor isomer**

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) :  $\delta7.87-7.80$  (m, 4H, Ar), 7.57-7.42 (m, 3H, Ar), 5.77-5.68 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.15-5.07 (m, 2H, <u>H</u><sub>2</sub>C=CH), 2.76-2.68 (m, 1H, CH<sub>3</sub>C<u>H</u>), 2.12 (br, 1H, OH), 1.61 (s, 3H, C<u>H</u><sub>3</sub>COH), 1.00 (d, J = 7.0 Hz, 3H, C<u>H</u><sub>3</sub>CH)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 Hz):  $\delta$ 144.6, 139.8, 133.0, 132.2, 128.1, 127.5, 127.4, 125.9, 125.6, 124.1, 124.0, 116.7, 75.8, 48.4, 25.9, 14.0 MS (CI, 200 eV) m/z 209 (1083), 210 (203), 171 (65), 365 (57), 211 (21) HRMS calcd for [C<sub>16</sub>H<sub>18</sub>O-OH]<sup>+</sup>: 209.1325, found: m/z 209.1330 (CI)



<sup>13</sup>C NMR (major isomer)





# <sup>13</sup>C NMR (minor isomer)



### 3,4-Dimethyl-2-phenylpent-4-en-2-ol (3ba)

### Major isomer

<sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 7.44-7.21 (m, 5H, Ph), 4.95 (s, 1H, <u>H</u>HC=CCH<sub>3</sub>), 4.87 (s, 1H, H<u>H</u>C=CCH<sub>3</sub>), 2.57 (q, *J* = 7.2 Hz, 1H, CH<sub>3</sub>C<u>H</u>), 2.00 (s, 1H, OH), 1.72 (s, 3H, H<sub>2</sub>C=CC<u>H<sub>3</sub></u>), 1.51 (s, 3H, C<u>H<sub>3</sub>COH</u>), 0.88 (d, *J* = 7.2 Hz, 3H, C<u>H</u><sub>3</sub>CH) <sup>13</sup>C NMR (CDCl<sub>3</sub>,100 Hz):  $\delta$ 147.9, 147.5, 127.8, 126.2, 125.0, 113.3, 75.7, 51.4, 29.4, 22.5, 14.4 MS (CI, 200 eV) m/z 173 (178), 121 (31), 174 (22) HRMS calcd for [C<sub>13</sub>H<sub>18</sub>O-OH]<sup>+</sup>: 173.1325, found: m/z 173.1332 (CI)

### **Minor isomer**

<sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 7.41-7.12 (m, 5H, Ph), 4.87 (s, 1H, <u>H</u>HC=CCH<sub>3</sub>), 4.77 (s, 1H, H<u>H</u>C=CCH<sub>3</sub>), 2.61 (q, *J* = 7.1 Hz, 1H, CH<sub>3</sub>C<u>H</u>), 2.31 (s, 1H, OH), 1.54 (s, 3H, H<sub>2</sub>C=CC<u>H<sub>3</sub></u>), 1.39 (s, 3H, C<u>H<sub>3</sub>COH</u>), 1.09 (d, *J* = 7.2 Hz, 3H, C<u>H</u><sub>3</sub>CH)

<sup>13</sup>C NMR (CDCl<sub>3</sub>,100 Hz): δ148.3, 148.0, 127.8, 126.4, 125.2, 113.3, 75.1, 51.3, 26.7, 23.5, 14.9

MS (CI, 200 eV) m/z 173 (689), 121 (138), 174 (104)

HRMS calcd for [C<sub>13</sub>H<sub>18</sub>O-OH]<sup>+</sup>: 173.1325, found: m/z 173.1329 (CI)









# <sup>13</sup>C NMR (minor isomer)



#### 3,3-Dimethyl-2-phenylpent-4-en-2-ol (3ba')



<sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 7.42-7.21 (m, 5H, Ph), 5.95 (dd, J = 17.5, 10.7 Hz, 1H, H<sub>2</sub>C=C<u>H</u>), 5.13-5.03 (m, 2H, <u>*H*</u><sub>2</sub>C=CH), 1.94 (s, 1H, OH), 1.58 (s, 3H, C<u>*H*</u><sub>3</sub>COH), 1.02 (s, 3H, C<u>*H*</u><sub>3</sub>CCH<sub>3</sub>), 0.98 (s, 3H, CH<sub>3</sub>CC<u>*H*</u><sub>3</sub>) <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  145.3, 145.1, 127.1, 127.0, 126.4, 113.8, 77.5, 44.3, 25.3, 22.7, 22.4 MS (CI, 200 eV) m/z 173 (1093), 174 (151), 121 (77) HRMS calcd for [C<sub>13</sub>H<sub>18</sub>O-OH]<sup>+</sup>: 173.1325, found: m/z 173.1331 (CI)







### 3,3,4-Trimethyl-2-phenylpent-4-en-2-ol (3ca)<sup>8</sup>

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ7.43-7.40 (m, 2H, Ph), 7.31-7.20 (m, 3H, Ph), 5.05 (s, <u>*H*</u>HC=C), 4.91 (s, 1H, H<u>*H*</u>C=C), 2.44 (s, 1H, OH), 1.59 (s, 3H, H<sub>2</sub>C=CC<u>*H*</u><sub>3</sub> or C<u>*H*</u><sub>3</sub>COH), 1.57 (s, 3H, H<sub>2</sub>C=CC<u>*H*</u><sub>3</sub> or C<u>*H*</u><sub>3</sub>COH), 1.12 (s, 3H, C<u>*H*</u><sub>3</sub>CCH<sub>3</sub>), 1.06 (s, 3H, CH<sub>3</sub>CC<u>*H*</u><sub>3</sub>)

<sup>13</sup>C NMR (CDCl<sub>3</sub>,100 Hz): δ151.4, 145.6, 127.0, 126.9, 126.3, 114.1, 77.0, 46.5, 25.4, 24.3, 23.8, 23.3 MS (CI, 200 eV) m/z 187 (124), 121 (26)







#### 2-(4-Chlorophenyl)-3,3,4-trimethylpent-4-en-2-ol (3cb)



IR (neat) 3510 cm<sup>-1</sup> (OH) bp: 230 °C /1.3 torr HRMS calcd for C<sub>14</sub>H<sub>18</sub>ClO: 237.10517, found: m/z 237.10486 (ESI, M<sup>-</sup>-1,) <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) : δ7.37-7.34 (m, 2H, Ph), 7.27-7.24 (m, 2H, Ph), 5.06 (s, 1H, <u>H</u>HC=C), 4.90 (s, 1H, H<u>H</u>C=C), 2.40 (s, 1H, OH), 1.61 (s, 3H, H<sub>2</sub>C=CC<u>H</u><sub>3</sub> or C<u>H</u><sub>3</sub>COH), 1.57 (s, 3H, H<sub>2</sub>C=CC<u>H</u><sub>3</sub> or C<u>H</u><sub>3</sub>COH), 1.11 (s, 3H, C<u>H</u><sub>3</sub>CCH<sub>3</sub>), 1.04 (s, 3H, CH<sub>3</sub>CC<u>H</u><sub>3</sub>) <sup>13</sup>C NMR (CDCl<sub>3</sub>,100 Hz): δ151.1, 144.1, 132.3, 128.5, 127.1, 114.4, 77.0, 46.5, 25.6, 24.2, 23.9, 23.6







2-(4-Bromophenyl)-3,3,4-trimethylpent-4-en-2-ol (3cc)



IR (neat) 3527 cm<sup>-1</sup> (OH) bp: 250 °C /0.93 torr

Anal. calcd for C<sub>14</sub>H<sub>19</sub>BrO: C, 59.37; H, 6.76, found: C, 59.60; H, 6.97

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ7.41–7.39 (m, 2H, Ph), 7.30–7.26 (m, 2H, Ph), 5.06 (s, 1H, <u>H</u>HC=C), 4.89 (s, 1H, H<u>H</u>C=C), 2.39 (s, 1H, OH), 1.61 (s, 3H, H<sub>2</sub>C=CC<u>H</u><sub>3</sub> or C<u>H</u><sub>3</sub>COH), 1.56 (s, 3H, H<sub>2</sub>C=CC<u>H</u><sub>3</sub> or C<u>H</u><sub>3</sub>COH), 1.10 (s, 3H, C<u>H</u><sub>3</sub>CCH<sub>3</sub>), 1.03 (s, 3H, CH<sub>3</sub>CC<u>H</u><sub>3</sub>)

<sup>13</sup>C NMR (CDCl<sub>3</sub>,100 Hz): δ150.9, 144.6, 130.0, 128.9, 120.5, 114.4, 77.0, 46.3, 25.4, 24.1, 23.8, 23.3







#### 3-Hydroxy-4,4,5-trimethyl-3-phenylhex-5-enenitrile (3ci)



white solid

IR (neat) 3410 cm<sup>-1</sup> (OH), 2263 cm<sup>-1</sup> (CN) ; m.p. 117.0 °C

HRMS calcd for C<sub>15</sub>H<sub>20</sub>NO: 230.1545, found: m/z 230.1543 (CI, M<sup>+</sup>+1, -0.2 mmu)

Anal. calcd for C15H19NO: C, 78.56; H, 8.35; N, 6.11, found: C, 78.39; H, 8.32; N, 5.96

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) : δ7.40–7.30 (m, 5H, Ph), 5.10 (s, 1H, <u>*H*</u>HC=C), 4.91 (s, 1H, H<u>*H*</u>C=C), 3.26 (d, J = 16.7 Hz, 1H, C<u>*H*</u>HCN), 3.00 (d, J = 16.7 Hz, 1H, CH<u>*H*</u>CN), 2.69 (s, 1H, OH), 1.65 (s, 3H, H<sub>2</sub>C=CC<u>*H*<sub>3</sub>), 1.09 (s, 3H, C<u>*H*</u><sub>3</sub>CCH<sub>3</sub>), 1.07 (s, 3H, CH<sub>3</sub>CC<u>*H*<sub>3</sub>)</u></u>

<sup>13</sup>C NMR (CDCl<sub>3</sub>,100 Hz): δ150.0, 140.9, 127.8, 127.7, 127.0, 118.2, 115.1, 78.7, 46.2, 27.9, 24.2, 23.3, 22.9







### 1-Bromo-3,3,4-trimethyl-2-phenylpent-4-en-2-ol (3aj)



IR (neat) 3548 cm<sup>-1</sup> (OH) b.p.: 140 °C/ 0.16 torr

HRMS calcd for  $C_{14}H_{19}ONaBr$ : 305.05115, found: m/z 305.05054 (ESI, M<sup>+</sup>+Na)

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) : δ7.38–7.22 (m, 5H, Ph), 5.01 (s, 1H, <u>*H*</u>HC=C), 4.82 (s, 1H, H<u>*H*</u>C=C), 4.27 (d, *J* = 10.6 Hz, 1H, C<u>*H*</u>HBr), 4.01 (d, *J* = 10.6 Hz, 1H, CH<u>*H*</u>Br), 2.57 (s, 1H, OH), 1.76 (s, 3H, H<sub>2</sub>C=CC<u>*H*<sub>3</sub>), 1.13 (s, 3H, C<u>*H*</u><sub>3</sub>CCH<sub>3</sub>), 1.08 (s, 3H, CH<sub>3</sub>CC<u>*H*<sub>3</sub>)</u></u>

<sup>13</sup>C NMR (CDCl<sub>3</sub>,100 Hz): δ150.4, 141.7, 127.7, 127.2, 127.1, 114.4, 79.5, 46.0, 43.4, 24.7, 24.0, 23.0







#### Diethyl 2-(2-(1-hydroxy-1-phenylethyl)but-3-en-1-yl)malonate (5a)



#### Major isomer

IR (neat) 3527 cm<sup>-1</sup> (OH), 1724 cm<sup>-1</sup> (C=O), b.p.: 230 °C/ 0.38 torr

<sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 7.40-7.21 (m, 5H, Ph), 5.71-5.62 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.25 (dd, *J* = 10.3, 1.8 Hz, 1H, <u>H</u>HC=CH), 5.11 (dd, *J* = 17.4, 1.7 Hz, 1H, H<u>H</u>C=CH), 4.17-4.01 (m, 4H, OC<u>H</u><sub>2</sub> x 2), 3.28 (dd, *J* = 11.1, 3.9 Hz, 1H, C<u>H</u>(CO<sub>2</sub>Et)<sub>2</sub>), 2.40-2.34 (m,1H, H<sub>2</sub>C=CHC<u>H</u>), 1.98-1.91 (m, 1H, C<u>H</u>HCH(CO<sub>2</sub>Et)<sub>2</sub>), 1.78-1.71 (m, 1H, CH<u>H</u>CH(CO<sub>2</sub>Et)<sub>2</sub>), 1.51 (s, 3H, C<u>H</u><sub>3</sub>COH), 1.22-1.18 (m, 6H, OCH<sub>2</sub>CH<sub>3</sub> x 2).

<sup>13</sup>C NMR (CDCl<sub>3</sub>,100 Hz): δ169.6, 169.2, 146.5, 136.8, 128.0, 126.6, 125.0, 119.6, 75.7, 61.3, 61.1, 53.1, 50.1, 29.2, 27.9, 14.0 MS (CI, 200 eV) m/z 157 (1188), 317 (821), 318 (161), 158 (146), 121 (44), 319 (24)

HRMS calcd for  $[C_{19}H_{26}O_5-OH]^+$ : 317.1747, found: m/z 317.1749 (CI)

#### Minor isomer

IR (neat) 3524 cm<sup>-1</sup> (OH), 1722 cm<sup>-1</sup> (C=O), b.p.: 228 °C/ 0.46 torr

<sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz) 1H-NMR (CDCl<sub>3</sub>)  $\delta$ : 7.42-7.22 (m, 5H, Ph), 5.57-5.48 (m, 1H, H<sub>2</sub>C=C<u>H</u>), 5.26 (dd, J = 10.1, 1.8 Hz, 1H, <u>H</u>HC=CH), 5.15 (dd, J = 17.0, 1.8 Hz, 1H, H<u>H</u>C=CH), 4.16-4.01 (m, 4H, OC<u>H</u><sub>2</sub> x 2), 3.27 (dd, J = 10.9, 4.1 Hz, 1H, C<u>H</u>(CO<sub>2</sub>Et)<sub>2</sub>), 2.36-2.30 (m, 1H, H<sub>2</sub>C=CHC<u>H</u>), 2.23-2.16 (m, 1H, C<u>H</u>HCH(CO<sub>2</sub>Et)<sub>2</sub>), 1.65-1.57 (m, 5H, CH<u>H</u>CH(CO<sub>2</sub>Et)<sub>2</sub> & C<u>H</u><sub>3</sub>COH), 1.24-1.18 (m, 6H, OCH<sub>2</sub>C<u>H</u><sub>3</sub> x 2). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 Hz):

δ169.6, 169.2, 145.6, 137.0, 127.9, 126.8, 125.7, 119.8, 75.3, 61.3, 61.2, 54.2, 50.1, 27.9, 26.6, 14.0, 13.9 MS (CI, 200 eV) m/z 317 (1151), 157 (591), 318 (238), 158 (80), 319 (49), 214 (48), 289 (27), 121 (25) HRMS calcd for [C<sub>19</sub>H<sub>26</sub>O<sub>5</sub>-OH]<sup>+</sup>: 317.1747, found: m/z 317.1751 (CI)



<sup>13</sup>C NMR (major isomer)







1 R. Ieki, Y. Kani, S. Tsunoi and I. Shibata, *Chem. Eur. J.*, 2015, **21**, 6295-6300.

- C. Li, R. Y. Liu, L. T. Jesikiewicz, Y. Yang, P. Liu and S. L. Buchwald, J. Am. Chem. Soc., 2019, 141, 5062-5070.
- P. Dey, M. Koli, D. Goswami, A. Sharma and S. Chattopadhyay, *Eur. J. Org. Chem.*, 2018, 1333-1341.
- L. Jiaming, Z. Zhenggen, S. Lilin, Z. Yan and W. Zhiyong, *Chem. Lett.*, 2006, 35, 498-499.
  F. Nowrouzi, A. N. Thadani and R. A. Batey, *Org. Lett.*, 2009, 11, 2631-2634.
- Y. Yatsumonji, T. Nishimura, A. Tsubouchi, K. Noguchi and T. Takeda, *Chem. Eur. J.*, 2009, 15, 2680-2686.
- 7 R. Wada, K. Oisaki, M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 2004, 126, 8910-8911.
- 8 N. Hayashi, H. Honda, M. Yasuda, I. Shibata and A. Baba, Org. Lett., 2006, 8, 4553-4556.