Supplementary information

A novel $CoFe_2O_4@Cr-MIL-101/Y$ zeolite ternary nanocomposite as a magnetically separable sonocatalyst for efficient sonodegradation of organic dye contaminants from water

Meysam Sadeghi, Saeed Farhadi,* and Abedin Zabardasti

Fig. S1. AFM 2-dimensional (2D) and 3-dimensional (3D) images of the as-synthesized (a) and (b) raw Y zeolite, (c) and (d) Cr-MIL-101/Y, (e) and (f) CoFe₂O₄@Cr-MIL-101/Y.

Fig. S2. Sonodecomposition process efficiency% (C_t/C_0) of the MB dye over the CoFe₂O₄@Cr-MIL-101/Y catalyst nanocomposite as a function of the initial MB concentration (optimized experimental conditions; irradiation time: 60 min, [H₂O₂]: 40 mmol/L (2 mL), [catalyst dosage]: 0.5 g/L, pH: 7 and temperature: 25±1°C).

Fig. S3. The influence of the H₂O₂ concentration on the sonodecomposition process of MB over the CoFe₂O₄@Cr-MIL-101/Y catalyst nanocomposite (optimized experimental conditions; irradiation time: 60 min, [MB]₀: 25 mg/L (50 mL), [catalyst dosage]: 0.5 g/L, pH: 7 and temperature: 25±1°C).

Fig. S4. The influence of the CoFe₂O₄@Cr-MIL-101/Y dosage on the sonodecomposition process of MB (optimized experimental conditions; irradiation time: 60 min, [MB]₀: 25 mg/L (50 mL), [H₂O₂]: 40

mmol/L (2 mL), pH: 7 and temperature: 25±1°C).

Fig.S5. The influence of the scavenger type on the sonodecomposition process of MB over the CoFe₂O₄@Cr-MIL-101/Y catalyst nanocomposite at different time intervals (optimized experimental conditions; [MB]₀: 25 mg/L (50 mL), [H₂O₂]: 40 mmol/L (2 mL), [catalyst dosage]: 0.5 g/L, pH: 7 and temperature: 25±1°C).