Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Electronic supplementary information for

Heterogeneous water oxidation photocatalysis based on periodic mesoporous organosilica immobilizing a tris(2,2'bipyridine)ruthenium sensitizer

Minoru Waki,*a Soichi Shirai, a Ken-ichi Yamanaka, Yoshifumi Maegawa and Shinji Inagakia

^aToyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan.

Experimental section

General. All reagents and solvents were commercially available and used without further purification. XRD patterns were recorded with a Rigaku RINT-TTR diffractometer using Cu K α radiation (50 kV, 300 mA). Nitrogen adsorption and desorption isotherms were acquired using a Quantachrome Nova3000e sorptometer, and surface areas were calculated from the linear sections of Brunauer-Emmett-Teller (BET) plots ($P/P_0 = 0.1-0.2$). Pore-size distributions were determined using density functional theory (DFT) (DFT kernel: N2 at 77 K on silica, cylindrical pores, nonlinear DFT (NLDFT) equilibrium model). Pore volumes were estimated by the t-plot method. FT-IR spectra were obtained with a Thermo Fisher Scientific Nicolet Avatar-360 FT-IR spectrometer using an attenuated total reflection (ATR) attachment. Steady-state absorption spectra and diffuse reflectance spectra were obtained using a spectrophotometer (JASCO, V-670). For solid powder samples, the absorption spectra were evaluated on the basis of the Kubelka-Munk function, $K / S = (1 - r)^2 / 2r$, where K and S are the absorption and scattering coefficients, respectively, and r is the intensity of the diffuse reflectance light. The sample powders were diluted with BaSO₄ to avoid saturation of the absorption. Emission spectra were measured using a spectrofluorometer (JASCO, FP-8600). Phosphorescence quantum yield was determined as an average of five measurements with an absolute photoluminescence quantum yield system (Hamamatsu, C9920-01). For the emission and quantum yield measurements of solid powder samples, a dilute suspension of powder was used to avoid reabsorption of the emission. The suspension was prepared by dispersion of the powder samples in H₂O.^{S1,S2} The measurements were carried out at room temperature (298 K). Decay curves of the phosphorescence were measured by a time-correlated single photon counting (TCSPC) system (Becker & Hickel, SPC-730 Module) as described elsewhere. The excitation light at 400 nm was obtained from the second harmonic generation output pulse of a mode-locked Ti:sapphire oscillator (Coherent, Vitesse) using 0.5 mm thick β-BaB₂O₄ (BBO) crystal. TEM observations were performed with a JEOL JEM-EX2000 operating at 200 kV.

Preparation for homogeneous ruthenium complexes

Ru(dmbpy)₂(**bpy)**(**PF**₆)₂. A 50-mL round-bottom-two-necked flask equipped with a magnetic stir bar and a reflux condenser was charged with [Ru(dmbpy)₂(dmso)Cl]Cl^{S3} (0.23 mmol, 0.14 g) and 2,2'bipyridine (0.2 mmol, 0.031 g) under Ar atmosphere. Ethanol (15 mL) was added, and the resulting mixture was stirred at 90 °C for 20 h. NH₄PF₆ aqueous solution was added to a reaction mixture at room temperature. The red solid was collected by filtration, washed with H₂O, and dried in vacuum. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.79 (d, *J* = 8.24 Hz, 2H), 8.68 (s, 4H), 8.12 (t, *J* = 7.4 Hz, 2H), 7.71 (d, *J* = 5.04 Hz, 2H), 7.53-7.48 (m, 6H), 7.33 (t, *J* = 5.72 Hz, 4H), 3.29 (s, 6 H), 3.27 (s, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ156.7, 156.2, 156.1, 151.2, 150.4, 150.3, 149.6, 137.6, 128.6, 127.8, 125.1, 124.4, 20.8. ESI-HRMS *m/z* calcd. for [C₃₄H₃₂F₆N₆PRu]⁺: 771.1383; found: 771.1386.

[Ru(dtbbpy)₂(dmso)Cl]Cl. Title compound was prepared according to the procedure in the literature published previously.^{S3} A 100-mL round-bottom-two-necked flask equipped with a magnetic stir bar was charged with Ru(dtbbpy)₂Cl₂ (0.74 mmol, 0.55 g) under Ar atmosphere. DMSO (30 mL) was added, and then the resulting mixture was stirred at 85 °C for 5 h. The solvent was removed in vacuo. The residual red oil was subsequently decanted with diethyl ether (Et₂O). The solidified residue was purified by recrystallization from acetone/Et₂O. ¹H NMR (400 MHz, CDCl₃) *δ* 10.06 (d, *J* = 6.4 Hz, 1H), 9.52 (d, *J* = 6.0 Hz, 1H), 9.50 (s, 1H), 9.33 (s, 1H), 8.20 (d, *J* = 1.8 Hz, 1H), 8.14 (d, *J* = 1.8 Hz, 1H), 7.67-7.65 (m, 3H), 7.33 (dd, *J* = 1.8, 6.0 Hz, 1H), 7.20 (dd, *J* = 1.8, 5.9 Hz, 1H), 7.09 (d, *J* = 6.0 Hz, 1H), 3.32 (s, 3H), 2.11 (s, 3H), 1.66 (s, 9H), 1.50 (s, 9H), 1.46 (s, 9H), 1.37 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): 165.1, 163.8, 162.6, 161.7, 158.1, 157.8, 157.3, 156.5, 156.3, 155.7, 155.2, 152.1, 151.7, 148.9, 124.6, 124.1, 124.04, 123.96, 119.7, 119.4, 45.3, 42.2, 36.4, 36.0, 35.4, 35.3, 30.8, 30.6, 30.5, 30.3.

Ru(dtbbpy)₂(bpy)(PF₆)₂. A 50-mL round-bottom-two-necked flask equipped with a magnetic stir bar and a reflux condenser was charged with [Ru(dtbbpy)₂(dmso)Cl]Cl (0.23 mmol, 0.18 g) and 2,2'-bipyridine (0.2 mmol, 0.031 g) under Ar atmosphere. Ethanol (15 mL) was added to a reaction mixture, and the resulting mixture was stirred at 90 °C for 20 h. NH₄PF₆ aqueous solution was room temperature. The red solid was collected by filtration, washed with H₂O, and dried in vacuum. ¹H NMR (400 MHz, DMSO-*d*6) δ 8.33 (d, *J* = 8.24 Hz, 2H), 8.20 (s, 4H), 7.97 (t, *J* = 8.02 Hz, 2H), 7.78 (d, *J* = 5.52 Hz, 2H), 7.65 (d, *J* = 5.92 Hz, 2H), 7.59 (d, *J* = 6.44 Hz, 2H), 7.53-7.47 (m, 6H), 1.42 (s, 18H), 1.41 (s, 18H); ¹³C NMR (100 MHz, DMSO-*d*6): 161.9, 161.9, 156.7, 156.4, 156.3, 151.0, 150.6, 150.5, 137.7, 127.9, 124.9, 124.7, 124.5, 121.92, 121.87, 35.5, 30.1. ESI-HRMS *m/z* calcd. for [C₄₆H₅₆F₆N₆PRu]⁺: 939.3264; found: 939.3273.

Ru(dmcbpy)₂(bpy)(PF₆)₂. A 50-mL round-bottom-two-necked flask equipped with a magnetic stir bar and a reflux condenser was charged with Ru(dmcbpy)₂Cl₂^{S4} (0.16 mmol, 0.14 g) and 2,2'bipyridine (0.17 mmol, 0.027 g) under Ar atmosphere. Ethanol (4 mL) and H₂O (4 mL) were added to a reaction mixture, and the resulting mixture was stirred at 90 °C for 20 h. NH₄PF₆ aqueous solution was room temperature. The red solid was collected by filtration, washed with H₂O, and dried in vacuum. ¹H NMR (400 MHz, DMSO-*d*6) δ 9.35 (d, *J* = 6.44 Hz, 4H), 8.85 (d, *J* = 8.24 Hz, 2H), 8.20 (t, *J* = 7.56 Hz, 2H), 7.98-7.89 (m, 6H), 7.81 (d, *J* = 5.04 Hz, 2H), 7.71 (d, *J* = 5.92 Hz, 2H), 7.50 (t, *J* = 6.42 Hz, 2H), 3.964 (s, 6 H), 3.958 (s, 6H); ¹³C NMR (100 MHz, DMSO-*d*6): 165.0, 164.0, 157.2, 157.1, 156.1, 152.9, 152.4, 151.2, 138.9, 138.2, 138.2, 128.2, 126.9, 126.8, 124.8, 124.1, 53.4. ESI-HRMS *m/z* calcd. for [C₃₈H₃₂F₆N₆PRu]⁺: 947.0977; found: 947.0942. **Computations.** The B3LYP functional^{S5, S6} was adopted in DFT calculations. The def2-TZVP and def2-SVP basis sets were used for Ru and other elements, respectively.^{S7} The solvent effect of water was incorporated using the polarizable continuum model (PCM) throughout the calculations.^{S8–10} All calculations were carried out utilizing Gaussian09 program.^{S11}

Scheme S1. Molecular structures of model complex, RuBP(X), with X = H, Me, t-Bu, or CO_2Me .

References

S1 K.-i. Yamanaka, T. Okada, Y. Goto, T. Tani, S. Inagaki, *Phys. Chem. Chem. Phys.*, 2010, **12**, 11688-11696.

S2 T. Okada, K.-i. Yamanaka, Y. Hirose, Y. Goto, T. Tani, S. Inagaki, *Phys. Chem. Chem. Phys.*, 2011, **13**, 7961-7967.

S3 D. Hesek, Y. Inoue, S. R. L. Everitt, H. Ishida, M. Kunieda and M. G. B. Drew, *J. Chem. Soc., Dalton Trans.*, 1999, 3701-3709.

S4 S. A. MacFarland, F. S. Lee, K. A. W. Y. Cheng, F. L. Cozens and N, P. Schepp, *J. Am. Chem. Soc.*, 2005, **127**, 7065-7070.

S5 A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.

S6 Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623–11627.

S7 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297-3305.

- S8 E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032-3041.
- S9 J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999-3093.
- S10 G. Scalmani and M. J. Frisch, J. Chem. Phys., 2010, 132, 114110-114111 114110-114115.
- S11 Gaussian 09, Revision D.01, G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
- J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.

Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.
Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng,
A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,
C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and
D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

Figure S1. XRD pattern and nitrogen adsorption/desorption isotherms of Ru(H)-BPy-PMO.

Figure S2. XRD pattern and nitrogen adsorption/desorption isotherms of Ru(Me)-BPy-PMO.

Figure S3. XRD pattern and nitrogen adsorption/desorption isotherms of Ru(t-Bu)-BPy-PMO.

Figure S4 Ru K-edge XANES spectra of Ru(X)-BPy-PMOs.

Figure S5 (a) Ru *K*-edge EXAFS oscillations and (b) Fourier transforms with curve fitting of Ru(X)-BPy-PMOs.

Figure S6 Ru K-edge XANES spectra of homogeneous Ru complexes.

Figure S7 (a) Ru *K*-edge EXAFS oscillations and (b) Fourier transforms with curve fitting of homogeneous Ru complexes.

Table ST	Ta	ble	S1
----------	----	-----	----

Complex	CN	Distance / Å	$\Delta E_0 / eV$	σ^2 / nm ²
Ru(bpy) ₃ Cl ₂	6.13 ± 1.40	2.08 ± 0.009	-0.79 ± 2.73	0.0030 ± 0.0009
$Ru(dmbpy)_2(bpy)(PF_6)_2$	5.94 ± 2.32	2.07 ± 0.014	-2.00 ± 4.47	0.0028 ± 0.0017
$Ru(dtbbpy)_2(bpy)(PF_6)_2$	5.97 ± 1.81	2.07 ± 0.012	-4.38 ± 3.88	0.0023 ± 0.0014
Ru(dmcbpy) ₂ (bpy)(PF ₆) ₂	5.89 ± 2.86	2.07 ± 0.020	-2.13 ± 5.14	0.0028 ± 0.0020

Figure S8 (a) UV/vis absorption and (b) emission spectrum of Ru(bpy)₃(PF₆)₂ in CH₃CN (1×10^{-5} M). The excitation wavelength is 450 nm.

Figure S9 (a) UV/vis absorption and (b) emission spectrum of $[Ru(dmbpy)_2(bpy)](PF_6)_2$ in CH₃CN (1 × 10⁻⁵ M). The excitation wavelength is 450 nm.

Figure S10 (a) UV/vis absorption and (b) emission spectrum of $[Ru(dtbbpy)_2(bpy)](PF_6)_2$ in CH₃CN (1 × 10⁻⁵ M). The excitation wavelength is 450 nm.

Figure S11 (a) UV/vis absorption and (b) emission spectrum of $[Ru(dmcbpy)_2(bpy)](PF_6)_2$ in CH₃CN (1 × 10⁻⁵ M). The excitation wavelength is 450 nm.

Figure S12 Phosphorescence quenching of Ru(X)-BPy-PMOs with (a) X = H, (b) X = Me, (c) X = t-Bu, (d) $X = CO_2Me$ in H₂O (2 mg/ 10 mL) in the presence of NaSO₄ (0.049 M).

Figure S13 TEM image of Ru(CO₂Me)-BPy-PMO after photoirradiation for 24 h.

Figure S14 (a) Ir L_{III} -edge XANES spectra and (b) Fourier transforms of Ru(CO₂Me)-BPy-PMO with IrO_x after photoirradiation and control Ir species.

Figure S15 The highest occupied molecular orbitals in the first triplet excited states of RuBP(X) (X = H, Me, *t*-Bu and CO₂Me). The orbitals are singly occupied and represent the distributions of the excited electrons.

Figure S16 Ionization potential for Ru(X)-BPy-PMOs. (a) X = H, (b) X = Me, (c) X = t-Bu, (d) $X = CO_2Me$.

Figure S17 Ionization potential for (a) $Ru(bpy)_3Cl_2$, (b) $[Ru(dmbpy)_2(bpy)](PF_6)_2$, (c) $[Ru(dtbbpy)_2(bpy)(PF_6)_2$, (d) $Ru(dmcbpy)_2(bpy)(PF_6)_2$.

Complex	IP
Ru(H)-BPy-PMO	6.08
Ru(Me)-BPy-PMO	5.98
Ru(t-Bu)-BPy-PMO	5.90
Ru(CO ₂ Me)-BPy-PMO	6.18
$Ru(bpy)_3Cl_2$	5.86
Ru(dmbpy) ₂ (bpy)(PF ₆) ₂	5.94
$Ru(dtbbpy)_2(bpy)(PF_6)_2$	5.87
Ru(dmcbpy) ₂ (bpy)(PF ₆) ₂	5.98

Table S2 IP values of Ru(X)-BPy-PMO and homogeneous Ru complexes.

Figure S18 Phosphorescence decay profiles of Ru(X)-BPy-PMOs (X = H, Me, *t*-Bu, and CO₂Me) in H₂O at room temperature, monitored at 600 nm upon excitation at 400 nm. The decay curves were successfully analyzed by a double-exponential function. A long lifetime was assigned to the Ru complex and a short lifetime to the BPy moieties in the PMO framework.

Figure S19 (a) UV/Vis diffuse reflectance spectra of $Ru(CO_2Me)$ -BPy-PMO before and after photocatalysis reaction for 24 h, and (b) normalized MLCT bands in 400-600 nm. Black line: before reaction, gray line: after reaction.