Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

A hydrazide organogelator for the fluoride sensing with hyperchromicity and gel-to-sol

transition

Sangwoo Park,^a Jeewon Ju,^b Young Ju Lee,^{a*} and Sang-Yup Lee^{b*}

1. Scheme of DPH synthesis

Figure S1. Scheme of DPH synthesis. 1-(2-Cyanoethyl)-pyrrole was hydrolyzed to Py-COOH with KOH. DPH was synthesized by conjugation of Py-COOH with adipic acid through DCC/NHS chemistry.

2. ¹H NMR spectroscopy of Py-COOH

Figure S2. ¹H-NMR spectroscopy of the Py-COOH. Spectrum showed peaks at δ 2.85 (m, 2H); 4.24 (m, 2H); 6.03 (m, 2H-CH of pyrrole); 6.69 (m, 2H-CH of pyrrole); 10.69 (bs, H-OH of carboxyl).

3. ¹H NMR spectroscopy of DPH

Figure S3. ¹H-NMR spectroscopy of the DPH. Spectrum showed peaks at δ 1.51 (m, 4H); 2.11 (m, 4H); 2.59 (m, 4H); 4.14 (s, 4H); 5.95 (m, 4H-CH of pyrrole); 6.71 (m, 4H-CH of pyrrole).

4. ¹³C-NMR spectroscopy of Py-COOH

Figure S4. ¹³C-NMR spectroscopy of Py-COOH. Spectrum of Py-COOH is as follows: δ 172.53, 120.54, 107.61, 44.46, 36.12.

5. ¹³C-NMR spectroscopy of DPH

Figure S5. ¹³C-NMR spectroscopy of DPH. Spectrum of DPH is as follows: δ 170.83, 168.72, 120.53, 107.60, 44.50, 35.38, 32.91, 24.66.

6. High-resolution mass spectroscopy of Py-COOH

Figure S6. High-resolution mass spectroscopy of Py-COOH. HRMS of Py-COOH calculated for C7H10NO2: 140.07. Found: 140.07.

7. High-resolution mass spectroscopy of DPH

Figure S7. High-resolution mass spectroscopy of DPH. HRMS of DPH calculated for C20H28N6O4: 416.21. Found: 417.22.

8. Selective detection of F- ion without interference by other anions

Figure S8. Selective detection of fluoride ion using DPH solution in DMF (DPH conc. = 0.1 mM). 5 equiv. anions were added to DPH solution for test. Presence of other anions did not interfere the selective interaction of DPH with fluoride ion (I₀: absorbance intensity of DPH).

9. Determination of F⁻ ion content in toothpaste

Figure S9. Determination of F- ion content in 1 mg/ml solution of toothpaste. The calibration curve was drawn using the tetrabutylammonium fluoride solutions at various concentrations.

10. Benesi-Hildebrand plot

Figure S10. Benesi-Hildebrand plots were drawn with reciprocals of [F-]^{1.5} and [F-]².

11. Proposed binding mechanism of F⁻ ion to DPH

Figure S11. The potential mechanism of F- binding to the hydrazide group of DPH resulting in isomeric transformation.

12. Comparison of limit of detection (LOD) for F⁻ ion

No.	Chemosensor	LOD (µM)	Medium	Recognition motif	Ref.
1	N-(3,4,5-tributoxyphenyl)-N0-4-[(4- hydroxyphenyl) azophenyl] benzohydrazide	0.043	CHCl ₃	hydrazide	1
2	bis(4-(2,4-dimethyl-phenylazo)- phenol)diethylene triimine	1.0	DMSO, DMF	azophenol	2
3	Copilar[5]arene PF5	0.026	water	Pillar[5]arene	3
4	1,8-naphthalimide,4-(2,2- dichiloroacetamide)-N-n-butyl- naphthalimide	0.52	CH ₃ CN	amino group	4
5	phenolphthalein-dialdehyde-(2-pyridyl) hydrazine-Al complex	0.13	Water/ DMSO mix	hydrazine-Al	5
6	Isophorone-boronate ester	0.033	THF	Picanol boronate	6
7	3-[[bis(pyridylmethyl)amino] methyl]-1,2- dihydroxy anthraquinone - NiCl ₂ complex	1.3	CH ₃ CN	hydrazine-Ni	7
8	(2E)-2-(naphthylmethylene) hydrazinecarbothioamide	140	DMSO/ H ₂ O mix	Thiosemicarbazo ne-Fe complex	8
9	AM-PDIs	0.14	CH ₂ Cl ₂	hydrazide	9
10	julolidine-functionalized N-(2- aminoethyl)-5-nitropyridin-2-amine	19.4	DMSO	hydrazine	10
11	DPH	0.49	DMF, DMSO	hydrazide	This work

[1] X. Ran, Q. Gao, L. Guo, RSC Adv., 2017, 7, 56016-56022.

[2] R. Arabahmadi, S. Amani, Supramol. Chem., 2014, 5-6, 321-328.

[3] T.-B. Wei, X.-B. Cheng, H. Li, F. Zheng, Q. Lin, H. Yao, Y.-M. Zhang, *RSC Adv.*, **2016**, *6*, 20987-20993.

[4] N. Wu, L.-X. Zhao, C.-Y. Jiang, P. Li, Y. Liu, Y. Fu, F. Ye, J. Mol. Liquids, 2020, 302, 112549.

[5] X.-Y. Kong, L.-J. Hou, X.-Q. Shao, S.-M. Shuang, Y. Wang, C. Dong, *Spectrochim. Acta – Part A: Mol. Biomol. Spec.*, **2019**, *208*, 131-139.

[6] J. R. Kumar, E. R. Reddy, R. Trivedi, A. K. Vardhaman, L. Giribabu, N. Mirzadeh, S. K. Bhargava, *Appl. Organometal. Chem.*, **2019**, *33*, e4688.

[7] L. Zhu, Y.-L. Bai, Y. Zhao, F. Xing, M.-X. Li, S. Zhu, Dalton Trans., 2019, 48, 5035-5047.

[8] W. Lu, H. Jiang, F. Hu, L. Jiang, Z. Shen, Tetrahedron, 2011, 67, 7909-7912.

[9] Z. J. Chen, L. M. Wang, G. Zou, L. Zhang, G. J. Zhang, X. F. Cai, M. S. Teng, *Dyes Pigments*, **2012**, *94*, 410-415.

[10] Y. W. Choi, J. J. Lee, G. R. You, S. Y. Lee, C. Kim, RSC Adv., 2015, 5, 86463-86472.