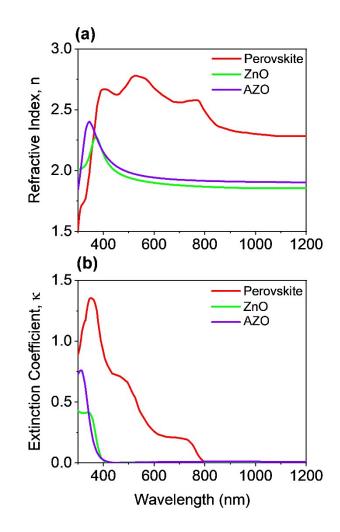
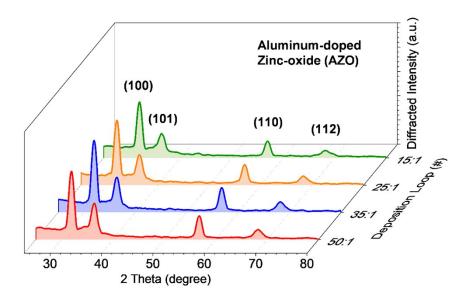
Supplementary Information


Atomic Layer Deposition of Metal Oxides for Efficient Perovskite Single-junction and Perovskite/Silicon Tandem Solar Cells

Mohammad I. Hossain^{1,2,†}, Adnan Mohammad^{2,†}, Wayesh Qarony¹, Saidjafarzoda Ilhom², Deepa R. Shukla^{2,3}, Dietmar Knipp^{4,*}, Necmi Biyikli^{2,*}, Yuen Hong Tsang^{1,*}


- 1.) Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- 2.) Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA
- 3.) Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- 4.) Geballe Laboratory for Advanced Materials, Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA

†: Authors equally contributed to this work

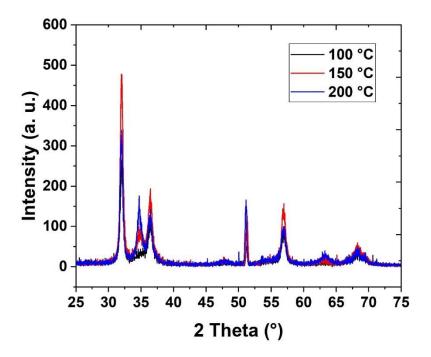

*: Corresponding author

Fig. S1 (a) Refractive index and (b) extinction coefficient of perovskite (MAPbI₃), ZnO, and AZO for the realization of perovskite solar cells.

Fig. S2 X-ray diffraction patterns of AZO films with various deposition cycles, grown on Si substrates.

Fig. S3 X-ray diffraction patterns of AZO films with various deposition temperatures, grown on Si substrates. The deposition cycle ratio is 25:1.

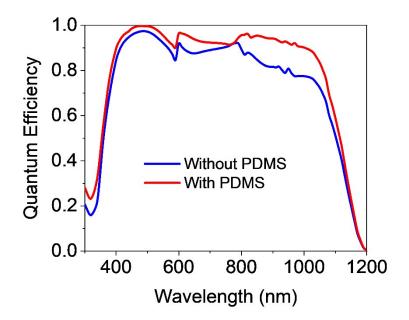


Fig. S4 A comparison of the calculated total quantum efficiency of perovskite/silicon tandem solar cell without and with PDMS optical incoupler.