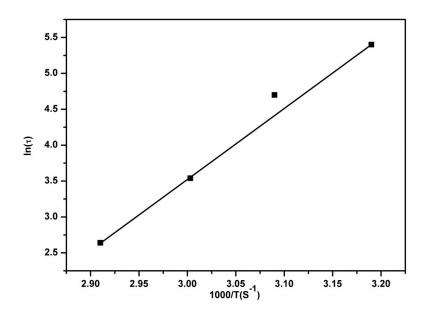

A Novel Thermoplastic Shape Memory Polymer with Solid-State Plasticity Derived from Exchangeable Hydrogen Bonds


Xu Zhang ab, Guangping Sun*a, Xuequan, Zhang *b

b. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China E-mail: xqzhang@ciac.ac.cn

Figure S1. Full range variable temperature FTIR spectra of PBTP-30, molar ratio of N-H groups to the butadiene monomer units is calculate by the relative value ratio of peak height of hydrogen bonded N-H in 3309cm⁻¹ and trans-1,4 polybutadiene characteristic peak located at 970cm⁻¹, the calculation value is 29mol%.

^{a.} Materials Science and Engineering, Jilin University, Changchun 130022, People's Republic of China E-mail: sungp@jlu.edu.cn

Figure S2. The ln (τ) variation as a function of 1/T, which followed a simple Arrhenius law:

$$\tau(T) = \tau_0 exp \frac{E_a}{RT}$$

with τ the relaxation time (s), τ_0 a constant (s), E_a the activation energy (J • mol⁻¹), R the ideal gas constant (J • mol⁻¹ •K⁻¹) and T the temperature (K). The activation energy E_a , as calculated from the slope (E_a/R), was 77.59 kJ • mol⁻¹.