Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

1 Supplementary Files

2

3 Utilization of Fe doped g-C₃N₄ in heterogeneous photo-Fenton-like

4 catalytic system: different parameters effect and system mechanism

5 investigation

- 6 Wei Luo¹ Wenyu Huang^{1,2*} Xiaoqing Feng¹ Ying Huang¹ Xiongwei Song¹ Hongfei Lin² •
- 7 Shuangfei Wang ^{2,3} Gilles Mailhot ⁴
- 8 ¹College of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
- 9 ²Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, 530007, China
- 10 ³Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University,
- 11 Nanning 530004, China
- 12 ⁴Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-

13	63000 Clermont–Ferrand, France
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	*Corresponding author.
31	E-mail address: huangwenyu@gxu.edu.cn (Wenyu Huang)

Fig. S1 Schematic diagram of photocatalytic reactor

 $35 \quad \text{Fig. S2. SEM images of } g\text{-}C_3N_4(a), 0.5 \text{ wt\% Fe-}C_3N_4(b), 1 \text{ wt\% Fe-}C_3N_4(c), 2 \text{ wt\% Fe-}C_3N_4(d) \text{ and } 5 \text{ or } 10^{-1} \text{ or }$

- 36 wt% Fe-C₃N₄ (e).

Table.S1. The rate constant of MB in different inorganic anions condition.

	Inorganic anions	Concentration (mM)	K (min ⁻¹)	R ²
		0	0.0303	0.9929
		10	0.0260	0.9948
		20	0.0238	0.9732
	Cl-	50	0.0174	0.9980
		100	0.0187	0.9903
		0	0.0303	0.9929
		10	0.0253	0.9869
		20	0.0299	0.9893
	HCO ₃ -	50	0.0405	0.9797
		100	0.0372	0.9907
		0	0.0303	0.9929
		10	0.0216	0.9967
	NO ₃ -	20	0.0195	0.9976
		50	0.0245	0.9952
		100	0.0198	0.9921
52 53				
55 54				
55				
56				
57				
58				
59				
60				
61				
62				
63				
65				
66				
67				
68				
69				
70				
71				
72				
73				

Table.S2. The rate constant of MB in different inorganic cations condition.

		U	
Inorganic cations	Concentration (m	K (min ⁻¹)	R ²
	0	0.0303	0.9929
	5	0.0180	0.9958
Al ³⁺	10	0.0147	0.9900
	20	0.0136	0.9875
	30	0.0105	0.9619
	0	0.0303	0.9929
	5	0.0270	0.9993
Mg^{2+}	10	0.0232	0.9998
	20	0.0224	0.9985
	30	0.0218	0.9989
	0	0.0303	0.9929
	5	0.0236	0.9997
Ca ²⁺	10	0.0213	0.9985
	20	0.0201	0.9898
	30	0.0191	0.9936

Table.S3. The possible intermediates of MB in the in the Fe-C₃N₄ heterogenous photo-Fenton-like
system.

Number	Molecular	m/z	Possible structural formula
	Iomuna		N
a	$C_{16}H_{18}N_3S$	284.15	
b	$C_{16}H_{19}N_{3}SO$	301.17	
С	C ₁₆ H ₂₃ N ₃ SO	305.16	NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2
d	C ₇ H ₅ NS	135.12	N S
e	C_6H_7N	93.04	NH ₂
			NH ₂
f	C ₆ H ₇ NO	109.10	ОН
g	C ₆ H ₆ O	95.09	ОН
h	C ₆ H ₁₃ NO ₂	130.16	OH OH OH
			NH2 ОН
j	$C_6H_6O_4$	143.09	OH OH
k	$C_2H_2O_3$	75.03	

Fig. S4. The proposed degradation pathway of MB in the Fe-C_3N_4 heterogenous photo-Fenton-like system.