Supplementary Information

Robust Hydrophobic Gold, Glass and Polypropylene Surfaces Obtained Through a Nanometric Covalently Bound Organic Layer

Alice Mattiuzzi,[⊥]* Ludovic Troian-Gautier,[†] Jérémy Mertens,[‡] François Reniers,[‡] Jean-François Bergamini,[£] Quentin Lenne,[£] Corinne Lagrost[£]* and Ivan Jabin[†]*

[⊥]X4C, 128 Rue du chêne Bonnet, 6110 Montigny-le-Tilleul, Belgium

[†] Laboratoire de Chimie Organique, Université Libre de Bruxelles (ULB), CP 160/06, 50 avenue F.D. Roosevelt, 1050 Brussels, Belgium.

^f Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes (France)

[‡] Chemistry of Surfaces, Interfaces and Nanomaterials – ChemSIN, Université Libre de Bruxelles (ULB), CP 255, Campus de la Plaine, boulevard du Triomphe, 1050 Brussels, Belgium.

Table of Contents

GENERAL INFORMATION	S3
EXPERIMENTAL SECTION	S3
FIGURE S1. AFM TOPOGRAPHY OF GLASS SURFACES, LEFT 10 μ M x 10 μ M, right 30 μ M x30 μ M Figure S2. Ellipsometric angles Ψ (Psi) and Δ (Delta) as a function of the wavelength at	S3
DIFFERENT INCIDENT ANGLES, 65° , 70° and 75° for bare gold surface. Continuous lines represent	IT THE
ACQUIRED DATA AND THE DOTTED BLACK LINES CORRESPOND TO THE CAUCHY FIT	S3
FIGURE S3. Ellipsometric angles Ψ (PSI) and Δ (Delta) as a function of the wavelength at	
DIFFERENT INCIDENT ANGLES, 65°, 70° AND 75° FOR A GOLD SURFACE MODIFIED WITH CALIX[4]ARENE 1	
THROUGH DIAZOATE ROUTE IN NAOH. CONTINUOUS LINES REPRESENT THE ACQUIRED DATA AND THE DO	TTED
BLACK LINES CORRESPOND TO THE CAUCHY FIT	
DIFFERENT INCIDENT ANGLES 65° 70° AND 75° FOR A GOLD SURFACE MODIFIED WITH CALIX[4]ARENE 1	
THROUGH ELECTROCHEMICAL ROUTE BY CA. CONTINUOUS LINES REPRESENT THE ACOUIRED DATA AND T	THE
DOTTED BLACK LINES CORRESPOND TO THE CAUCHY FIT.	S4
FIGURE S5. Ellipsometric angles Ψ (Psi) and Δ (Delta) as a function of the wavelength at	
different incident angles, 65° , 70° and 75° for a Gold surface modified with calix[4]arene 1	
THROUGH ELECTROCHEMICAL ROUTE BY CV . Continuous lines represent the acquired data and 1	ſHE
DOTTED BLACK LINES CORRESPOND TO THE CAUCHY FIT.	S5
FIGURE S6. ¹ H NMR (298K, 400MHz) SPECTRUM OF 3 IN CDCL ₃ . $S =$ SOLVENT AND $W =$ WATER	S6
FIGURE S7. ¹ H NMR (298K, 400MHz) SPECTRUM OF 4 IN CDCL ₃ . S = SOLVENT AND W = WATER	S6
FIGURE S8. ¹³ C NMR (298K, 100MHZ) SPECTRUM OF 4 IN CDCL ₃ . $S = SOLVENT$	
FIGURE S9. COSY NMR (298K, 400MHZ) SPECTRUM OF 4 IN CDCL3.	/د
FIGURE SIU. HSQU NMR (298K, 400MHZ) SPECTRUM OF 4 IN CDCL3.	/ ۲
FIGURE S11. HIVIDC INVIR (298K, 400/WHz) SPECTRUM OF 4 IN CDCL3	ەد ەە
FIGURE S12. IT WINK (250K, 400WHZ) SPECTRUM OF 5 IN CDCL ₃ . S = SOLVENT AND W = WATER FIGURE S13 13 C NMR (298K, 100MHZ) SPECTRUM OF 5 IN CDCL ₃ . S = SOLVENT	۵۵ ۵۷
FIGURE S13. CONVINC (298K, 100MHZ) SPECTRUM OF 5 IN CDCL ₃ . S SOLVENT	رد ۶۹
FIGURE S15. HSOC NMR (298K, 400MHz) SPECTRUM OF 5 IN CDCL3	
FIGURE S16. HMBC NMR (298K, 400MHz) SPECTRUM OF 5 IN CDCL3.	S10
FIGURE S17. ¹ H NMR (298K, 400MHz) SPECTRUM OF 6 IN CDCL ₃ . $S = SOLVENT$, $W = WATER AND G =$	
GREASE	S11
FIGURE S18. ¹³ C NMR (298K, 100MHz) SPECTRUM OF 6 IN CDCL ₃ . S = SOLVENT AND G = GREASE	S11
FIGURE S19. COSY NMR (298K, 400MHz) SPECTRUM OF 6 IN CDCL3.	S12
FIGURE S20. HSQC NMR (298K, 400MHz) SPECTRUM OF 6 IN CDCL3.	S12
FIGURE S21. HMBC NMR (298K, 400MHz) SPECTRUM OF 6 IN CDCL ₃	S13
FIGURE S22. ¹ H NMR (298K, 400MHz) SPECTRUM OF 7 IN CDCL ₃ . $S = SOLVENT$	S13
FIGURE S23. 13 C NMR (298K, 100MHz) SPECTRUM OF 7 IN CDCL ₃ . S = SOLVENT	S14
FIGURE S24. COSY NMR (298K, 400MHz) SPECTRUM OF 7 IN CDCL ₃ .	S14
FIGURE S25. HSQC NMR (298K, 400MHZ) SPECTRUM OF 7 IN CDCL ₃	S15
FIGURE S26. HMBC NMR (298K, 400MHZ) SPECTRUM OF 7 IN CDCL3	\$15
FIGURE S27. 'H NMR (298K, 400MHZ) SPECTRUM OF I IN CD ₃ CN. S = SOLVENT, W = WATER	
FIGURE 520. "UNIVIK (298K, 100MHZ) SPECTRUM OF 1 IN UD3UN. $S = SOLVENT$ FIGURE S20. COSV NMP (208K, 400MHZ) SPECTRUM OF 1 IN CD. CN.	516
FIGURE 527. COST INVIK (290K, 400MHZ) SPECTRUM OF TIN CD3CN.	/±د
FIGURE 550, HORC NUR (270K, 400MHz) SPECTRUM OF 1 IN CD3CN.	/ ۲۲ ۲۵
FIGURE 531. HIVIDC HIVIR (270K, 400191112) SPECTRUM OF T IN CD3CH.	319

General Information: The ¹H NMR, ¹³C NMR and 2D NMR were performed with a Varian-400 VNMRJ System. The chemical shifts are expressed in ppm and determined in comparison of the deuterated solvent used as internal reference. Most of ¹H NMR signals were attributed through 2D NMR analyses (COSY, HSQC). Abbreviation: s: singlet, d: doublet, t: triplet, m: massif, mult: multiplet.

Figure S1. AFM topography of glass surfaces, left 10 µm x 10 µm, right 30 µm x30 µm

Figure S2. Ellipsometric angles ψ (Psi) and Δ (Delta) as a function of the wavelength at different incident angles, 65°, 70° and 75° for bare gold surface. Continuous lines represent the acquired data and the dotted black lines correspond to the Cauchy fit.

Figure S3. Ellipsometric angles ψ (Psi) and Δ (Delta) as a function of the wavelength at different incident angles, 65°, 70° and 75° for a gold surface modified with calix[4]arene 1 through diazoate route in NaOH. Continuous lines represent the acquired data and the dotted black lines correspond to the Cauchy fit.

Figure S4.Ellipsometric angles ψ (Psi) and Δ (Delta) as a function of the wavelength at different incident angles, 65°, 70° and 75° for a gold surface modified with calix[4]arene 1 through electrochemical route by CA. Continuous lines represent the acquired data and the dotted black lines correspond to the Cauchy fit.

Figure S5. Ellipsometric angles ψ (Psi) and Δ (Delta) as a function of the wavelength at different incident angles, 65°, 70° and 75° for a gold surface modified with calix[4]arene 1 through electrochemical route by CV. Continuous lines represent the acquired data and the dotted black lines correspond to the Cauchy fit.

Figure S6. ¹H NMR (298K, 400MHz) spectrum of **3** in CDCl₃. S = solvent and W = water

Figure S7.¹H NMR (298K, 400MHz) spectrum of **4** in CDCl₃. S = solvent and W = water

Figure S8. ¹³C NMR (298K, 100MHz) spectrum of 4 in CDCl₃. S = solvent

Figure S9. COSY NMR (298K, 400MHz) spectrum of 4 in CDCl₃.

Figure S10. HSQC NMR (298K, 400MHz) spectrum of 4 in CDCl₃.

Figure S11. HMBC NMR (298K, 400MHz) spectrum of 4 in CDCl₃.

Figure S12. ¹H NMR (298K, 400MHz) spectrum of 5 in CDCl₃. S = solvent and W = water

Figure S13. ¹³C NMR (298K, 100MHz) spectrum of 5 in CDCl₃. S = solvent

Figure S14. COSY NMR (298K, 400MHz) spectrum of 5 in CDCl₃.

Figure S15. HSQC NMR (298K, 400MHz) spectrum of 5 in CDCl₃.

Figure S16. HMBC NMR (298K, 400MHz) spectrum of 5 in CDCl₃.

Figure S17. ¹H NMR (298K, 400MHz) spectrum of **6** in CDCl₃. S = solvent, W = water and G = grease

Figure S18. ¹³C NMR (298K, 100MHz) spectrum of **6** in CDCl₃. S = solvent and G = grease

Figure S19. COSY NMR (298K, 400MHz) spectrum of 6 in CDCl₃.

Figure S20. HSQC NMR (298K, 400MHz) spectrum of 6 in CDCl₃.

Figure S21. HMBC NMR (298K, 400MHz) spectrum of 6 in CDCl₃.

Figure S22. ¹H NMR (298K, 400MHz) spectrum of 7 in CDCl₃. S = solvent

Figure S23. ¹³C NMR (298K, 100MHz) spectrum of 7 in CDCl₃. S = solvent

Figure S24. COSY NMR (298K, 400MHz) spectrum of 7 in CDCl₃.

Figure S25. HSQC NMR (298K, 400MHz) spectrum of 7 in CDCl₃.

Figure S26. HMBC NMR (298K, 400MHz) spectrum of 7 in CDCl₃.

Figure S27. ¹H NMR (298K, 400MHz) spectrum of 1 in CD₃CN. S = solvent, W = water.

Figure S28. ¹³C NMR (298K, 100MHz) spectrum of 1 in CD₃CN. S = solvent.

Figure S29. COSY NMR (298K, 400MHz) spectrum of 1 in CD₃CN.

Figure S30. HSQC NMR (298K, 400MHz) spectrum of 1 in CD₃CN.

Figure S31. HMBC NMR (298K, 400MHz) spectrum of 1 in CD₃CN.