Electronic Supplementary Information

Stereoselective Synthesis of (+)-5-Thiosucrose and (+)-5-Thioisosucrose

Atsushi Ueda, ${ }^{\text {a,b }}$ Jinhong Pi, ${ }^{\text {a }}$ Yui Makura, ${ }^{\text {b }}$ Masakazu Tanaka ${ }^{\mathrm{b}}$ and Jun'ichi Uenishi* ${ }^{\text {a,c }}$
${ }^{\text {a }}$ Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8412, Japan
${ }^{\mathrm{b}}$ Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
${ }^{\mathrm{c}}$ Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan

E-mail: aueda@nagasaki-u.ac.jp (A. Ueda), juenishi@phs.osaka-u.ac.jp (J. Uenishi)

Table of Contents

1. General procedures and methods S3
2. Synthesis outlined in Scheme 1 S3
3. Synthesis outlined in Scheme 2 S4
4. Synthesis outlined in Scheme 3 S6
5. Synthesis outlined in Scheme 4 S7
6. Synthesis outlined in Scheme 5 S7
7. Biological studies S12
8. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and gCOSY NMR spectra
${ }^{1}$ H NMR spectral data of compound 7 S14
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound 7 S14
gCOSY NMR spectral data of compound 7 S15
${ }^{1} \mathrm{H}$ NMR spectral data of compound $\mathbf{8 b}$ S15
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound $\mathbf{8 b}$ S16
gCOSY NMR spectral data of compound $\mathbf{8 b}$ S16
${ }^{1}$ H NMR spectral data of compound $\mathbf{8 d}$ S17
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound $\mathbf{8 d}$ S17
gCOSY NMR spectral data of compound 8d S18
${ }^{1} \mathrm{H}$ NMR spectral data of compound $\mathbf{1 0}$ S18
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound $\mathbf{1 0}$ S19
${ }^{1}$ H NMR spectral data of compound 2 S19
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound 2 S20
${ }^{1} \mathrm{H}$ NMR spectral data of compound $\mathbf{1 1}$ S20
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound $\mathbf{1 1}$ S21
gCOSY NMR spectral data of compound $\mathbf{1 1}$ S21
${ }^{1}$ H NMR spectral data of compound $\mathbf{1 3}$ S22
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound 13 S22
gCOSY NMR spectral data of compound 13 S23
${ }^{1}$ H NMR spectral data of compound 14 S23
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound 14 S24
gCOSY NMR spectral data of compound 14 S24
${ }^{1}$ H NMR spectral data of compound $\mathbf{1 5}$ S25
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound $\mathbf{1 5}$ S25
gCOSY NMR spectral data of compound $\mathbf{1 5}$ S26
${ }^{1}$ H NMR spectral data of compound 16 S26
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound 16 S27
${ }^{1}$ H NMR spectral data of compound $\mathbf{1 7}$ S27
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound 17 S28
gCOSY NMR spectral data of compound $\mathbf{1 7}$ S28
${ }^{1}$ H NMR spectral data of compound $\mathbf{1 8}$ S29
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound $\mathbf{1 8}$ S29
gCOSY NMR spectral data of compound $\mathbf{1 8}$ S30
${ }^{1}$ H NMR spectral data of compound 1 S30
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of compound 1 S31
gCOSY NMR spectral data of compound 1 S31

1. General procedures and methods

${ }^{1}$ H NMR chemical shifts (δ) are reported in parts per million (ppm) relative to the resonance of the solvent or to tetramethylsilane (0.00 ppm). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts are reported in ppm relative to the resonance of the solvent or to acetonitrile (1.47 ppm) when $\mathrm{D}_{2} \mathrm{O}$ was used. For the assignment of protons in ${ }^{1} \mathrm{H}$ NMR spectra, protons of pyranoside ring are numbered as $1^{\prime}, 2^{\prime}$, etc. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signal assignments were done using gCOSY analysis. Low- and high-resolution mass spectra (LRMS and HRMS) were measured using fast atom bombardment (FAB) ionization with double-focusing high-resolution magnetic sector or using electrospray ionization (ESI) in TOF mode. Silica gel (230-400 mesh) was used for flash column chromatography. Analytical thin-layer chromatography (TLC) was performed on glass pre-coated with silica gel (0.25 mm thickness). Compounds were observed in UV-light at 254 nm and then visualized with p-anisaldehyde/sulfuric acid in EtOH stain or molybdatephosphoric acid in EtOH stain. All moisture-sensitive reactions were carried out under an argon atmosphere. THF was dried over sodium/benzophenone ketyl, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$, and they were distilled prior to use.

2. Synthesis outlined in Scheme 1

Glycosylation of 6 with 3. A mixture of acceptor $\mathbf{6}(35.0 \mathrm{mg}, 63.0 \mu \mathrm{~mol})$, donor $\mathbf{3}(100 \mathrm{mg}, 126$ $\mu \mathrm{mol}$), and 2,6-di-tert-butyl-4-methylpyridine ($12.9 \mathrm{mg}, 63.0 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was stirred for 15 min at room temperature in presence of activated powdered molecular sieves $4 \AA(0.3 \mathrm{~g})$. To the mixture was dropped a solution of dimethyl(methylthio)sulfonium trifluoromethanesulfonate (0.5 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.504 \mathrm{~mL}, 252 \mu \mathrm{~mol}$) at room temperature and the mixture was stirred for 2 h at room temperature. The reaction was quenched with triethylamine (0.3 mL), diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a Celite pad, and evaporated. The residue was purified by flash column chromatography on silica gel eluted with 10% EtOAc in n-hexane to afford 2,3,4,6-tetra- O-benzyl-5-deoxy-5-methyldisulfenyl-D-glucose $7(33.4 \mathrm{mg})$ in 88% yield. Colorless oil. $R_{\mathrm{f}}=0.67(30 \%$ EtOAc in n-hexane $) .[\alpha]^{20}{ }_{\mathrm{D}}+7.3\left(c 0.47, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 7.38-7.21(20 \mathrm{H}, \mathrm{m}), 4.82(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 4.68(1 \mathrm{H}, \mathrm{d}, J=11.4$ $\mathrm{Hz}, \mathrm{C} H \mathrm{HPh}), 4.59(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 4.55(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 4.52(1 \mathrm{H}, \mathrm{d}, J$ $=12.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 4.50(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 4.48(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 4.47$ $(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 4.28\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=5.2, J_{3,4}=3.8 \mathrm{~Hz}, \mathrm{H}-3\right), 4.10\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=7.1\right.$, $\left.J_{3,4}=3.8 \mathrm{~Hz}, \mathrm{H}-4\right), 3.89\left(1 \mathrm{H}, \mathrm{d}, J_{2,3}=5.2 \mathrm{~Hz}, \mathrm{H}-2\right), 3.87\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=9.9, J_{5,6 \mathrm{a}}=5.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right)$, $3.77\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=9.9, J_{5,6 \mathrm{~b}}=5.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.29\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5}=7.1, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=5.7 \mathrm{~Hz}, \mathrm{H}-5\right)$, $2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 200.3,137.8,137.7,137.4,137.3,128.5$, 74.0, 73.2, 73.1, 68.8, 52.6, 23.8. IR (film): 2859, 1728, 1496, $1454 \mathrm{~cm}^{-1}$. MS (FAB) $m / z: 625$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Na}, 625.2058$; found, 625.2052.

3. Synthesis outlined in Scheme 2

1,3,4,6-Tetra-O-benzoyl-D-fructofuranosyl trichloroacetimidate (8b). To a solution of fructose $8 \mathbf{~ a ~}(1.80 \mathrm{~g}, 3.02 \mathrm{mmol})$ and trichloroacetonitrile ($2.9 \mathrm{~mL}, 29 \mathrm{mmol}$) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added cesium carbonate $(1.00 \mathrm{~g}, 3.07 \mathrm{mmol})$ and the reaction mixture was stirred overnight at room temperature. After which the reaction mixture was filtered through a Celite pad, and the filtrate was concentrated. The residue was purified on basic aluminium oxide column ($20 \% \mathrm{EtOAc}$ in n-hexane) to give imidate $\mathbf{8 b}(1.50 \mathrm{~g})$ in 66% yield with $2: 1 \alpha / \beta$ anomeric ratio. Colorless oil. $R_{\mathrm{f}}=0.32(20 \%$ EtOAc in n-hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(\alpha$-anomer): $8.62(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.18-7.92(8 \mathrm{H}$, m), 7.11-6.82 (13H, m, ArH, H-3), $5.87\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=5.1, J_{3,4}=2.2 \mathrm{~Hz}, \mathrm{H}-4\right), 5.67\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{la}, 1 \mathrm{~b}}=\right.$ $12.1 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 5.27\left(1 \mathrm{H}, \mathrm{d}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=12.1 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 5.00-4.63(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,6 \mathrm{a}, 6 \mathrm{~b}) ; \delta$ (β-anomer): $8.51(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.18-7.92(8 \mathrm{H}, \mathrm{m}), 7.11-6.82(12 \mathrm{H}, \mathrm{m}), 6.49\left(1 \mathrm{H}, \mathrm{d}, J_{3,4}=6.2 \mathrm{~Hz}, \mathrm{H}-3\right), 6.37(1 \mathrm{H}$, $\left.\mathrm{t}, J_{3,4}=6.2, J_{4,5}=6.2 \mathrm{~Hz}, \mathrm{H}-4\right), 5.48\left(1 \mathrm{H}, \mathrm{d}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=11.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 5.17\left(1 \mathrm{H}, \mathrm{d}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=11.7 \mathrm{~Hz}\right.$, H-1b), 5.00-4.63 (3H, m, H-5, 6a, 6b). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ (α - and β-anomer): 166.0 $(\beta), 165.9(\alpha), 165.7(\alpha), 165.7(\beta), 165.5(\alpha), 165.4(\beta), 165.2(\beta), 164.8(\alpha), 159.1(\alpha), 158.4(\beta)$, $133.5,133.3,133.1,133.0,132.8,130.4,130.3,130.3,130.2,130.1,130.0,129.5,129.4,129.3$, $129.2,128.7,128.6,128.5,128.5,128.4,128.3,128.0,127.7,112.2(\alpha), 107.9$ (β), 92.3 (β), 91.8 $(\alpha), 83.7(\alpha), 80.7(\beta), 80.4(\alpha), 78.5(2 C, \alpha$ and $\beta), 77.7(\beta), 65.0(\beta), 64.6(\beta), 63.6(\alpha), 61.6(\alpha)$. IR (film): 3460, $1720,1451 \mathrm{~cm}^{-1}$. MS (FAB) $m / z: 762[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Cl}_{3} \mathrm{NO}_{10} \mathrm{Na}, 762.0676$; found, 762.0673.

Benzyl (1,3,4,6-tetra- \boldsymbol{O}-benzoyl-D-fructofuranosyl) phthalate (8d). To a mixture of fructose 8a $(1.00 \mathrm{~g}, 1.68 \mathrm{mmol})$ and benzyl hydrogen phthalate $(1.29 \mathrm{~g}, 5.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added N, N '-dicyclohexylcarbodiimide ($1.04 \mathrm{~g}, 5.04 \mathrm{mmol}$) and 4-(dimethylamino)pyridine (DMAP, $205 \mathrm{mg}, 1.68 \mathrm{mmol}$), and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was filtered through a Celite pad, which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The
organic filtrate was washed with 5% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($20 \mathrm{~mL} \times 2$) followed by water (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by silica gel flash column chromatography eluted with 20% EtOAc in n-hexane to give phthalate $\mathbf{8 d}(1.08 \mathrm{~g})$ in 77% yield as an anomeric mixture ($\alpha: \beta=1: 1.2$). Colorless syrup. $R_{\mathrm{f}}=0.21(20 \% \mathrm{EtOAc}$ in n-hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\alpha$-anomer): 8.05-7.90 ($8 \mathrm{H}, \mathrm{m}$), 7.79-7.76 ($2 \mathrm{H}, \mathrm{m}$), $7.59-7.17(19 \mathrm{H}, \mathrm{m}), 6.40\left(1 \mathrm{H}, \mathrm{d}, J_{3,4}=2.4 \mathrm{~Hz}, \mathrm{H}-3\right), 5.73\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=4.8, J_{3,4}=2.4 \mathrm{~Hz}, \mathrm{H}-4\right)$, $5.35(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.99\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6 \mathrm{~b}}\right.$ $\left.=4.9, J_{4,5}=4.8, J_{5,6 \mathrm{a}}=3.5 \mathrm{~Hz}, \mathrm{H}-5\right), 4.98(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.80\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.1, J_{5,6 \mathrm{a}}=3.5\right.$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{a}), 4.72\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.1, J_{5,6 \mathrm{~b}}=4.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right) ; \delta(\beta$-anomer): 8.05-7.90(8H, m), $7.68-7.63(2 \mathrm{H}, \mathrm{m}), 7.59-7.17(19 \mathrm{H}, \mathrm{m}), 6.33\left(1 \mathrm{H}, \mathrm{d}, J_{3,4}=6.4 \mathrm{~Hz}, \mathrm{H}-3\right), 6.27\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=6.4\right.$, $\left.J_{4,5}=5.9 \mathrm{~Hz}, \mathrm{H}-4\right), 5.32(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 5.07(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz})$, $5.01(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.88-4.73(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,6 \mathrm{a}, 6 \mathrm{~b}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\alpha-$ and β-anomer): $167.0,166.7,166.1,166.0,165.5,165.5,165.4,165.4,165.4,165.2,164.7,164.4$, $135.5,135.3,133.7,133.5,133.5,133.4,133.2,133.1,133.0,132.9,132.5,132.0,131.6,131.5$, $131.3,131.3,131.0,130.9,130.0,129.9,129.8,129.7$, 129.7, 129.7, 129.7, 129.5, 129.4, 129.4, $129.3,129.2,129.1,129.0,129.0,128.8,128.8,128.6,128.6,128.4,128.4,128.4,128.3,128.3$, 128.3, 128.3, 128.3, 128.2, 128.2, 128.2, 128.1, 110.1 ($\alpha-\mathrm{C}-2$), 106.1 ($\beta-\mathrm{C}-2), 82.9,80.4,79.9,77.5$, $77.4,77.0,67.5,67.4,64.7,64.7,63.5,62.1$. IR (KBr): 3065, 1727, 1601, 1491, $1452 \mathrm{~cm}^{-1} . \mathrm{MS}$ (FAB) $m / z: 857[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{49} \mathrm{H}_{38} \mathrm{O}_{13} \mathrm{Na}, 857.2210$; found, 857.2206.

Preparation of 1,3,4,6-Tetra- \boldsymbol{O}-benzoyl- α-D-fructofuranosyl 2,3,4,6-tetra- \boldsymbol{O}-acetyl-5-thio- α-Dglucopyranoside (10). Glycosylation of 9 with $\mathbf{8 b}$. Donor $\mathbf{8 b}(17 \mathrm{mg}, 0.023 \mathrm{mmol}, \alpha: \beta=2: 1)$ and acceptor 9 ($45 \mathrm{mg}, 0.12 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ containing powdered molecular sieves $(4 \AA, 0.1 \mathrm{~g})$. The mixture was stirred under argon for 15 min after which trimethylsilyl trifluoromethanesulfonate (TMSOTf, $9 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$) was added at $-40{ }^{\circ} \mathrm{C}$. The reaction was monitored by TLC and was quenched by adding triethylamine (0.1 mL), diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a Celite pad, and the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (30% EtOAc in n-hexane) to give glycoside $\mathbf{1 0}(16 \mathrm{mg})$ in 73% yield. Glycosylation of $\mathbf{9}$ with $\mathbf{8 c}$. Donor $\mathbf{8 c}{ }^{16 \mathrm{c}}(71 \mathrm{mg}, 0.10 \mathrm{mmol}, \alpha: \beta=3: 1)$ and acceptor 9 ($0.22 \mathrm{~g}, 0.60 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ containing powdered molecular sieves $(4 \AA$, $0.4 \mathrm{~g})$. The mixture was stirred under argon for 15 min after which $\operatorname{TMSOTf}(18 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$
was added at $-40{ }^{\circ} \mathrm{C}$. The reaction was monitored by TLC and was quenched by adding triethylamine $(0.5 \mathrm{~mL})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a Celite pad, and the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel ($30 \% \mathrm{EtOAc}$ in n-hexane) to give glycoside $\mathbf{1 0}(75 \mathrm{mg})$ in 80% yield. Glycosylation of $\mathbf{9}$ with $\mathbf{8 d}$. Acceptor 9 $(50.0 \mathrm{mg}, 137 \mu \mathrm{~mol})$ and donor $\mathbf{8 d}(137 \mathrm{mg}, 164 \mu \mathrm{~mol}, \alpha: \beta=1: 1.2)$ were azeotropically dried with toluene (5 mL) three times and further dried on $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum for 1 h . The resultant mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $-40^{\circ} \mathrm{C}$, then dropped TMSOTf $(29.6 \mu \mathrm{~L}, 164 \mu \mathrm{~mol})$. The reaction mixture was stirred for 2 h and then quenched by adding triethylamine (0.5 mL) and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (30% EtOAc in n-hexane) to give glycoside $\mathbf{1 0}(90.4 \mathrm{mg}$) in 70% yield. Colorless syrup. $R_{\mathrm{f}}=0.34(40 \%$ EtOAc in n-hexane $) .[\alpha]^{26}{ }_{\mathrm{D}}+117.4\left(c 1.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 8.18-8.15 ($2 \mathrm{H}, \mathrm{m}$), 8.02-7.99 (2H, m), 7.96-7.92 (2H, m), 7.85-7.82 (2H, m), 7.64-7.59 (1H, m), $7.57-7.48(5 \mathrm{H}, \mathrm{m}), 7.43-7.39(2 \mathrm{H}, \mathrm{m}), 7.31-7.27(4 \mathrm{H}, \mathrm{m}), 6.12(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 5.68(1 \mathrm{H}, \mathrm{dd}, J$ $=10.2,9.3 \mathrm{~Hz}), 5.59(1 \mathrm{H}, \mathrm{dd}, J=4.9,1.1 \mathrm{~Hz}), 5.41(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{dd}, J=10.2,3.1$ $\mathrm{Hz}), 5.27(1 \mathrm{H}, \mathrm{dd}, J=10.9,9.3 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{dd}, J=12.1,2.9 \mathrm{~Hz}), 4.71$ $(1 \mathrm{H}, \mathrm{dd}, J=12.1,5.2 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{ddd}, J=5.2,4.9,2.9 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 4.00(1 \mathrm{H}$, dd, $J=12.3,4.0 \mathrm{~Hz}), 3.59(1 \mathrm{H}$, ddd, $J=10.9,4.0,2.9 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{dd}, J=12.3,2.9 \mathrm{~Hz}), 2.02$ $(3 \mathrm{H}, \mathrm{s}), 1.98(3 \mathrm{H}, \mathrm{s}), 1.85(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 170.2,169.6$, $169.3,169.2,166.1,166.0,165.1,164.5,133.7,133.6,133.5,133.2,130.3,129.7,129.6,129.4$, 129.4, 128.8, 128.7, 128.6, 128.6, 128.4, 128.4, 109.0, 83.0, 81.0, 79.0, 74.2, 71.9, 71.5, 71.4, 63.5, 60.7, 60.3, 39.3, 20.5 (2C), 20.4, 20.3. IR (film): 2965, 1729, 1601, $1452 \mathrm{~cm}^{-1}$. MS (FAB) $m / z: 965$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{48} \mathrm{H}_{46} \mathrm{O}_{18} \mathrm{SNa}, 965.2303$; found, 965.2310.

4. Synthesis outlined in Scheme 3

$\boldsymbol{\alpha}$-D-Fructofuranosyl 5-thio- $\boldsymbol{\alpha}$-D-glucopyranoside (2). To a solution of compound $\mathbf{1 0}$ (68 mg, $0.072 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added sodium methoxide ($2 \mathrm{mg}, 0.04 \mathrm{mmol}$). The mixture was stirred at room temperature for 4 h after which the solvent was removed and the residue was purified on Cosmosil $140 \mathrm{C}_{18}$-OPN with water as an eluent to give $2(23 \mathrm{mg})$ in 90% yield. White solid. $R_{\mathrm{f}}=0.50\left(25 \% \mathrm{H}_{2} \mathrm{O}\right.$ in MeCN$) .[\alpha]^{25}+247.3\left(c 0.90, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) δ : $5.23(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{ddd}, J=6.0,3.8,3.3 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{d}$, $J=12.2 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{dd}, J=3.3,2.0 \mathrm{~Hz}), 3.93(1 \mathrm{H}, \mathrm{dd}, J=12.3,5.5 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=12.3$,
$3.5 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 3.79-3.76(1 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{dd}, J=12.1,3.8 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{dd}$, $J=12.1,6.0 \mathrm{~Hz}), 3.65-3.59(2 \mathrm{H}, \mathrm{m}), 3.29(1 \mathrm{H}, \mathrm{ddd}, J=10.6,5.5,3.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(75 \mathrm{MHz}$, $\mathrm{D}_{2} \mathrm{O}$) $\delta: 110.3,85.8,79.6,77.4,75.1,74.2,73.1,72.3,61.5,59.9,58.7,43.7$. IR (KBr): 3422, 2935 cm^{-1}. MS (FAB) m/z: $381[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{10} \mathrm{SNa}$, 381.0831; found, 381.0836.

1,3,4,6-Tetra- \boldsymbol{O}-acetyl- α-D-fructofuranosyl 2,3,4,6-tetra- \boldsymbol{O}-acetyl-5-thio- α-D-glucopyranoside

 (11). The mixed solution of compound $2(7.0 \mathrm{mg}, 0.019 \mathrm{mmol})$ and DMAP (1 mg) in pyridine (1 $\mathrm{mL})$ and acetic anhydride (0.2 mL) was stirred at room temperature for 2 h . The reaction mixture was diluted with EtOAc, and washed with saturated aqueous NaHCO_{3} solution, water, and brine, dried over MgSO_{4}, and concentrated. The residue was purified by flash column chromatography on silica gel (40% EtOAc in n-hexane) to give $11(12 \mathrm{mg})$ in 89% yield. Colorless syrup. $R_{\mathrm{f}}=0.45$ $(60 \%$ EtOAc in n-hexane $) .[\alpha]^{26}{ }_{\mathrm{D}}+147.8\left(c 0.66, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 5.73(1 \mathrm{H}$, dd, $\left.J_{2,3}=10.2, J_{3,4}=9.3 \mathrm{~Hz}, \mathrm{H}-3\right), 5.69\left(1 \mathrm{H}, \mathrm{d}, J_{3,4^{\prime}}=0.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.56\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=11.0, J_{3,4}=\right.$ $9.3 \mathrm{~Hz}, \mathrm{H}-4), 5.35\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=10.2, J_{1,2}=2.9 \mathrm{~Hz}, \mathrm{H}-2\right), 4.95\left(1 \mathrm{H}, \mathrm{d}, J_{1,2}=2.9 \mathrm{~Hz}, \mathrm{H}-1\right), 4.87(1 \mathrm{H}$, dd, $\left.J_{4^{\prime}, 5^{\prime}}=3.3, J_{3^{\prime}, 4^{\prime}}=0.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.55\left(1 \mathrm{H}, \mathrm{ddd}, J_{5^{\prime}, 6^{\prime} \mathrm{b}}=7.7, J_{4^{\prime}, 5^{\prime}}=4.1, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=3.3 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, $4.54\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime} \mathrm{a}, 6^{\circ} \mathrm{b}}=12.6, J_{5^{\prime}, 6^{\circ} \mathrm{a}}=4.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.52\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.0, J_{5,6 \mathrm{a}}=4.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right)$, $4.52\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.3 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime} \mathrm{a}\right), 4.30\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 6^{\circ} \mathrm{b}}=12.6, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=7.7 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.29(1 \mathrm{H}$, d, $\left.J_{1}{ }^{\mathrm{a}, 1}{ }^{\prime} \mathrm{b}=12.3 \mathrm{~Hz}, \mathrm{H}-1 ’ \mathrm{~b}\right), 3.80\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.0, J_{5,6 \mathrm{~b}}=3.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.59\left(1 \mathrm{H}, \operatorname{ddd}, J_{4,5}=\right.$ $\left.11.0, J_{5,6 \mathrm{a}}=4.4, J_{5,6 \mathrm{~b}}=3.1 \mathrm{~Hz}, \mathrm{H}-5\right), 2.01(3 \mathrm{H}, \mathrm{s}), 1.79(3 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}, \mathrm{s}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.71(3 \mathrm{H}$, s), $1.69(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 170.7,170.4,170.4$, 169.6 (2C), 169.4, 169.3, 168.5, 108.6, 82.2, 79.0, 78.2, 74.6, 72.1, 71.4, 71.0, 63.3, 61.2, 59.4, 39.3, 20.7, 20.6 20.6, 20.5, 20.5, 20.4, 20.4, 20.4. IR (film): 2959, $1743 \mathrm{~cm}^{-1} . \mathrm{MS}$ (FAB) $\mathrm{m} / \mathrm{z}: 717$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{18} \mathrm{SNa}, 717.1677$; found, 717.1672.
5. Synthesis outlined in Scheme 4

2,3,4,6-Tetra- O-benzyl-5-thio- α-d-glucopyranosyl 1,6-di- O-benzoyl-3,4- \boldsymbol{O}-isopropylidene- β-D-

 psicofuranoside (13). A mixture of glycosyl acceptor 6 ($200 \mathrm{mg}, 360 \mu \mathrm{~mol}$) and donor $\mathbf{1 2}$ (288 mg , $432 \mu \mathrm{~mol}$) was azeotropically dried with toluene three times and further dried under reduced pressure on $\mathrm{P}_{2} \mathrm{O}_{5}$ for 1 h . The mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14.4 \mathrm{~mL})$, cooled to $-40{ }^{\circ} \mathrm{C}$ and then dropped TMSOTf ($78.1 \mu \mathrm{~L}, 432 \mu \mathrm{~mol}$). The whole was stirred for 40 min at -40 to $-20^{\circ} \mathrm{C}$, then quenched with saturated aqueous NaHCO_{3} solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, dried over MgSO_{4} and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluted with 15% EtOAc in n-hexane to give glycoside 13 (262 mg) in 76% yield. Colorless syrup. $R_{\mathrm{f}}=0.52\left(30 \%\right.$ EtOAc in n-hexane). $[\alpha]^{26}{ }_{\mathrm{D}}+92.2$ (c 0.54, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) ס: 8.29-8.26 ($2 \mathrm{H}, \mathrm{m}$), 8.08-8.06 ($2 \mathrm{H}, \mathrm{m}$), 7.49-7.46 (2H, m), $7.25-6.92(24 \mathrm{H}, \mathrm{m}), 5.25(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz})$, $5.04(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.81\left(1 \mathrm{H}, J_{3,4}=6.0 \mathrm{~Hz}, \mathrm{H}-3\right), 4.80\left(1 \mathrm{H}, \mathrm{d}, J_{1}, 2\right.$, $\left.=2.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.75\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.6, J_{5,6 \mathrm{a}}=8.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.69(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.68$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{a}}=8.2, J_{5,6 \mathrm{~b}}=5.3, J_{4,5}=1.7 \mathrm{~Hz}, \mathrm{H}-5\right), 4.64(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.53\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=\right.$ $\left.10.6, J_{5,6 \mathrm{~b}}=5.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 4.42\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4}=6.0, J_{4,5}=1.7 \mathrm{~Hz}, \mathrm{H}-4\right), 4.28(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz})$, $4.26\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=9.5, J_{3^{\prime}, 4^{\prime}}=9.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.18(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz})$, $4.12\left(1 \mathrm{H}, \mathrm{dd}, J_{4}, 5^{\prime}=10.6, J_{3^{\prime}, 4^{\prime}}=9.2 \mathrm{~Hz}, \mathrm{H}^{\prime} 4^{\prime}\right), 3.91\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\mathrm{a}, 6^{\prime} \mathrm{b}}}=9.9, J_{5^{\prime}, 6^{\mathrm{a}}}=3.7 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right)$, $3.73\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=9.5, J_{1^{\prime}, 2^{\prime}}=2.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.62\left(1 \mathrm{H}, \mathrm{ddd}, J_{4^{\prime}, 5^{\prime}}=10.6, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=3.7, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=2.2\right.$ $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 3.13\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 6^{\circ} \mathrm{b}}=9.9, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=2.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 1.38(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.0,165.9,139.0,138.3,137.9,137.7,133.1,132.8,130.2,129.8$, 129.7, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.6, 127.6, 127.6, 127.5, 127.2, 113.6, 109.9, 84.2, 84.1, 83.9, 83.7, 82.2, 81.7, 75.9, 75.5, 73.9, 73.9, 73.2, 67.3, 64.7, 63.5, 42.1, 26.5, 24.9. IR (KBr): 2924, 1720, 1602, $1496 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{FAB}) m / z: 989[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{57} \mathrm{H}_{58} \mathrm{O}_{12} \mathrm{SNa}$, 989.3547; found, 989.3555 .
6. Synthesis outlined in Scheme 5

2,3,4,6-Tetra-O-benzyl-5-thio- α-D-glucopyranosyl 1,6-di- O-benzoyl- β-D-psicofuranoside (14).

The mixed solution of compound $13(368 \mathrm{mg}, 381 \mu \mathrm{~mol})$ and p-toluenesulfonic acid monohydrate ($145 \mathrm{mg}, 762 \mu \mathrm{~mol}$) in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,8 \mathrm{~mL})$ was stirred at room temperature for 2 days. The resultant mixture was quenched with saturated aqueous NaHCO_{3} solution and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$
and concentrated to dryness. The crude residue was purified by silica gel flash column chromatography eluted with 35% EtOAc in n-hexane to give $14(200 \mathrm{mg})$ in 57% yield along with $70.5 \mathrm{mg}(19 \% \mathrm{rsm})$ of recovered starting material. Colorless syrup. $R_{\mathrm{f}}=0.38(40 \% \mathrm{EtOAc}$ in n-hexane). $[\alpha]^{26}{ }_{\mathrm{D}}+77.8\left(c \quad 0.88, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.07-8.02(4 \mathrm{H}, \mathrm{m})$, $7.57-7.53(1 \mathrm{H}, \mathrm{m}), 7.47-7.41(3 \mathrm{H}, \mathrm{m}), 7.31-7.23(15 \mathrm{H}, \mathrm{m}), 7.19-7.16(5 \mathrm{H}, \mathrm{m}), 7.10-7.07(2 \mathrm{H}, \mathrm{m})$, $5.24\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.86-4.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 4.82(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 4.70(1 \mathrm{H}, \mathrm{d}, J$ $=11.9 \mathrm{~Hz}), 4.70-4.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}), 4.68(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 4.60(1 \mathrm{H}$, d, $J=10.8 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.44$ $(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.40-4.35(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-6 \mathrm{~b}), 4.35(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $4-\mathrm{OH}), 4.12-4.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 3.92\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 6^{\circ} \mathrm{b}}=9.9, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=4.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.86-3.80(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}-3^{\prime}, 4^{\prime}\right), 3.77\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=9.6, J_{1^{\prime}, 2^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.58\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 6^{\circ} \mathrm{b}}=9.9, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=2.6\right.$ $\left.\mathrm{Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 3.34\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4^{\prime}, 5^{\prime}}=10.0, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=4.4, J_{5^{\prime}, 6^{\prime} \mathrm{b}}=2.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 2.90(1 \mathrm{H}$, br s, $3-\mathrm{OH})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.3,166.5,138.8,138.2,137.8,137.7,133.3,133.1,130.0$, $129.9,129.7,129.5,128.4,128.3,128.3,128.3,128.3,128.2,128.2,127.9,127.7,127.7,127.7$, 127.6, 127.4, 127.3, 107.6, 84.0, 83.5, 82.1, 81.8, 75.8, 75.6, 74.3, 73.3, 73.2, 71.9, 71.7, 67.8, 65.5, 62.6, 42.0. IR (film): 3440, 3032, 2863, 1722, $1602 \mathrm{~cm}^{-1}$. MS (FAB) $m / z: 949[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{54} \mathrm{H}_{54} \mathrm{O}_{12} \mathrm{SNa}, 949.3234$; found, 949.3226.

2,3,4,6-Tetra-O-benzyl-5-thio- α-D-glucopyranosyl 1,4,6-tri- \boldsymbol{O}-benzoyl- $\boldsymbol{\beta}$-D-psicofuranoside

(15). A stirred mixture of compound 14 ($200 \mathrm{mg}, 216 \mu \mathrm{~mol}$) and di- n-butyltin (IV) oxide (56.5 mg , $227 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(7 \mathrm{~mL})$ was heated at reflux for 45 min . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, added benzoyl chloride ($251 \mu \mathrm{~L}, 2.16 \mathrm{mmol}$) and triethylamine ($300 \mu \mathrm{~L}, 2.16 \mathrm{mmol}$), and stirred for 10 min at the same temperature, and then the solvent was removed under reduced pressure. The residue was purified by silica gel flash column chromatography eluted with 20% EtOAc in n-hexane to yield $\mathbf{1 5}(138 \mathrm{mg})$ in 62% yield. Colorless syrup. $R_{\mathrm{f}}=0.43(30 \% \mathrm{EtOAc}$ in n-hexane). $[\alpha]^{21}{ }_{\mathrm{D}}+55.0\left(c 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.10-7.99(6 \mathrm{H}, \mathrm{m})$, $7.59-7.11(29 \mathrm{H}, \mathrm{m}), 5.55\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=7.8, J_{3,4}=4.7 \mathrm{~Hz}, \mathrm{H}-4\right), 5.22\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=2.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$, $4.91-4.86(3 H, m), 4.73-4.44(12 H, m), 4.00\left(1 H, d d, J_{6^{\prime}, 6^{\circ} \mathrm{b}}=10.0, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=4.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.91$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=9.3, J_{3^{\prime}, 4^{\prime}}=9.2 \mathrm{~Hz}, \mathrm{H}^{\prime} 3^{\prime}\right), 3.84\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}}=10.2, J_{3^{\prime}, 4^{\prime}}=9.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 3.79(1 \mathrm{H}$, dd, $\left.J_{2^{\prime}, 3^{\prime}}=9.3, J_{1^{\prime}, 2^{\prime}}=2.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.66\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 6^{\circ} \mathrm{b}}=10.0, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=2.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 3.53(1 \mathrm{H}$, ddd, $\left.J_{4^{\prime}, 5^{\prime}}=10.2, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=4.4, J_{5^{\prime}, 6^{\prime} \mathrm{b}}=2.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.8$, 166.1, 165.6, 138.9, 138.3, 137.9, 137.8, 133.5, 133.2, 133.1, 130.0, 129.8, 129.7, 129.7, 129.7,
$129.0,128.5,128.4,128.4,128.4,128.3,128.3,128.3,128.3,128.2,127.9,127.7,127.6,127.5$, $127.3,108.4,83.7,83.5,81.8,79.0,75.8,75.6,73.8,73.3,73.3,73.1,72.3,67.8,65.0,62.3,42.0$. IR (film): 3452, 3030, 1724, 1602, $1495 \mathrm{~cm}^{-1}$. MS (FAB) $m / z: 1053[M+N a]^{+}$. HRMS (FAB) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{61} \mathrm{H}_{58} \mathrm{O}_{13} \mathrm{SNa}$, 1053.3496; found, 1053.3502.

1,4,6-Tri-O-benzoyl- β-D-erythro-2,3-hexodiulofuranosyl 2,3,4,6-tetra-O-benzyl-5-thio- α-D-glucopyranoside (16). To a solution of oxalyl chloride ($117 \mu \mathrm{~L}, 1.34 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was slowly added dimethyl sulfoxide ($190 \mu \mathrm{~L}, 2.68 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $-7{ }^{\circ} \mathrm{C}$, and stirred for 30 min at the same temperature. A solution of compound $\mathbf{1 5}(138 \mathrm{mg}, 134 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5$ mL) was added into the reaction mixture and the whole was stirred for 1 h at -78 to $-60^{\circ} \mathrm{C}$. After addition of triethylamine ($559 \mu \mathrm{~L}, 4.02 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, the resultant mixture was further stirred for 1 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with EtOAc, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel eluted with 20% EtOAc in n-hexane to give $\mathbf{1 6}(111 \mathrm{mg})$ in 81% yield. Colorless syrup. $R_{\mathrm{f}}=0.50\left(30 \%\right.$ EtOAc in n-hexane). $[\alpha]^{22}{ }_{\mathrm{D}}+130.5\left(c \quad 1.18, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.01-7.94(6 \mathrm{H}, \mathrm{m}), 7.60-7.56(1 \mathrm{H}, \mathrm{m}), 7.52-7.47(2 \mathrm{H}, \mathrm{m}), 7.41-7.37(2 \mathrm{H}, \mathrm{m})$, $7.35-7.31(2 \mathrm{H}, \mathrm{m}), 7.28-7.11(22 \mathrm{H}, \mathrm{m}), 6.33(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 5.42(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 4.90(1 \mathrm{H}$, d, $J=10.7 \mathrm{~Hz}), 4.89(1 \mathrm{H}, \mathrm{dd}, J=12.2,2.7 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz})$, $4.73(1 \mathrm{H}, \mathrm{dd}, J=12.2,4.6 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{ddd}, J=7.6,4.6,2.7 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 4.60$ $(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 4.56-4.47(2 \mathrm{H}, \mathrm{m}), 4.55(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.36$ $(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{dd}, J=10.2,3.5 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.0 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{dd}, J$ $=10.1,9.2 \mathrm{~Hz}), 3.66(1 \mathrm{H}, \mathrm{dd}, J=9.0,3.2 \mathrm{~Hz}), 3.36(1 \mathrm{H}, \mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}), 3.04(1 \mathrm{H}, \mathrm{ddd}, J=$ $10.1,3.5,2.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 207.2,166.1,165.2,165.1,138.8,138.2$, $137.9,137.8,133.8,133.4,133.3,130.0,129.8$, $129.7,129.2,128.6,128.5,128.4,128.3,128.3$, $127.9,127.8,127.7,127.6,127.5,127.4,98.1,83.1,82.9,81.1,76.8,76.1,75.6,73.0,72.4,72.1$, 70.2, 67.3, 67.0, 63.4, 42.2. IR (film): 2864, 1779, 1728, 1601, $1495 \mathrm{~cm}^{-1}$. MS (FAB) $\mathrm{m} / \mathrm{z}: 1051$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{61} \mathrm{H}_{56} \mathrm{O}_{13} \mathrm{SNa}$, 1051.3339; found, 1051.3348.

1,4,6-Tri- O-benzoyl- β-D-fructofuranosyl $\quad 2,3,4,6$-tetra- O-benzyl-5-thio- α-D-glucopyranoside

 (17). To a mixed solution of compound $\mathbf{1 6}(111 \mathrm{mg}, 108 \mu \mathrm{~mol})$ in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,3 \mathrm{~mL})$ was added sodium borohydride $(8.2 \mathrm{mg}, 0.22 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the reaction was stirred for 30 min at the same temperature. After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, aqueous phase was extracted with EtOAc and the organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (eluent: 15% EtOAc in n-hexane) to afford $\mathbf{1 7}(98.4 \mathrm{mg})$ in 89% yield. Colorless syrup. $R_{\mathrm{f}}=0.48$ (30% EtOAc in n-hexane). $[\alpha]^{20}{ }_{\mathrm{D}}+63.2\left(c 0.90, \mathrm{CHCl}_{3}\right.$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8: 8.08-8.03 $(4 \mathrm{H}, \mathrm{m}), 7.99-7.96(2 \mathrm{H}, \mathrm{m}), 7.61-7.20(27 \mathrm{H}, \mathrm{m}), 7.17-7.15(2 \mathrm{H}, \mathrm{m}), 5.67\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}=J_{4^{\prime}, 5^{\prime}}=\right.$ $\left.7.1 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.47\left(1 \mathrm{H}, \mathrm{d}, J_{1,2}=2.9 \mathrm{~Hz}, \mathrm{H}-1\right), 4.88(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz})$, $4.79-4.53(9 \mathrm{H}, \mathrm{m}), 4.52(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.45-4.40(1 \mathrm{H}, \mathrm{m}), 4.44(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 3.96$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.1, J_{5,6 \mathrm{a}}=4.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.90\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=9.1, J_{3,4}=9.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.86(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{4,5}=9.9, J_{3,4}=9.0 \mathrm{~Hz}, \mathrm{H}-4\right), 3.77\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=9.1, J_{1,2}=2.9 \mathrm{~Hz}, \mathrm{H}-2\right), 3.74(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}$, $\mathrm{OH}), 3.60\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.1, J_{5,6 \mathrm{~b}}=2.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.47\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5}=9.9, J_{5,6 \mathrm{a}}=4.2, J_{5,6 \mathrm{~b}}=\right.$ $2.6 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.0,165.8,165.7,138.6,138.2,137.7,137.4$, $133.5,133.2,133.0,129.9,129.8,129.7,129.6,129.5,129.0,128.5,128.4,128.4,128.3,128.2$, $128.2,127.9,127.8,127.7,127.6,127.6,127.4,104.6,83.5,83.1,81.5,78.1,77.7,77.3,76.0,75.6$, $73.2,73.1,73.1,67.5,64.5,64.0,42.3$. IR (film): 3438, 3030, 2864, 1730, 1602, $1495 \mathrm{~cm}^{-1} . \mathrm{MS}$ (FAB) $m / z: 1053[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{61} \mathrm{H}_{58} \mathrm{O}_{13} \mathrm{SNa}, 1053.3496$; found, 1053.3491.

1,3,4,6-Tetra- O-acetyl- β-D-fructofuranosyl 2,3,4,6-tetra- O-acetyl-5-thio- α-D-glucopyranoside (18). Metal sodium (approximately $50 \mathrm{mg}, 2.2 \mathrm{mmol}$) was added to liquid ammonia (4 mL) at $-78{ }^{\circ} \mathrm{C}$. To the resultant dark blue solution was added compound $\mathbf{1 7}(98.4 \mathrm{mg}, 95.4 \mu \mathrm{~mol})$ in THF $(4 \mathrm{~mL})$ solution and the reaction was vigorously stirred for 5 min at the same temperature. MeOH $(4 \mathrm{~mL})$ was added to the reaction, which was stirred for 15 min prior to the addition of Acetic acid $(1 \mathrm{~mL})$, then warmed to room temperature and evaporated. The residue obtained after removal of the solvent was diluted with pyridine (5 mL) and acetic anhydride ($2 \mathrm{~mL}, 21.2 \mathrm{mmol}$), and then stirred at room temperature for 2 h in the presence of DMAP ($20 \mathrm{mg}, 0.16 \mathrm{mmol}$). The residue obtained after co-evaporation with toluene was purified by flash column chromatography on silica gel eluted with 45% EtOAc in n-hexane to give $\mathbf{1 8}(57.7 \mathrm{mg})$ in 87% yield. Colorless syrup. $R_{\mathrm{f}}=$ $0.11(40 \%$ EtOAc in n-hexane $) .[\alpha]^{21}{ }_{\mathrm{D}}+67.6\left(c 0.90, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.76$
$\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=10.2, J_{3,4}=9.7 \mathrm{~Hz}, \mathrm{H}-3\right), 5.71\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4^{\prime}}=5.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.62\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{4}}=5.9\right.$, $\left.J_{4^{\prime}, 5}=5.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.54\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=10.8, J_{3,4}=9.7 \mathrm{~Hz}, \mathrm{H}-4\right), 5.36\left(1 \mathrm{H}, \mathrm{d}, J_{1,2}=2.8 \mathrm{~Hz}, \mathrm{H}-1\right)$, $5.23\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=10.2, J_{1,2}=2.8 \mathrm{~Hz}, \mathrm{H}-2\right), 4.52\left(2 \mathrm{H}, \mathrm{d}, J_{5^{\prime}, 6^{\prime}}=5.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.44\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=\right.$ $\left.12.0, J_{5,6 \mathrm{a}}=5.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.38\left(1 \mathrm{H}, \mathrm{d}, J_{1}{ }^{\mathrm{a}, 1^{\prime}{ }^{\prime} \mathrm{b}}=12.1 \mathrm{~Hz}, \mathrm{H}-1\right.$ 'a $), 4.28\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=12.1 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-1{ }^{\prime} \mathrm{b}\right), 4.22\left(1 \mathrm{H}, \mathrm{dt}, J_{4^{4}, 5^{\prime}}=5.6, J_{5^{\prime}, 6^{\prime}}=5.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.0, J_{5,6 \mathrm{~b}}=3.1 \mathrm{~Hz}\right.$, $\mathrm{H}-6 \mathrm{~b}), 3.80\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5}=10.8, J_{5,6 \mathrm{a}}=5.4, J_{5,6 \mathrm{~b}}=3.1 \mathrm{~Hz}, \mathrm{H}-5\right), 1.99(3 \mathrm{H}, \mathrm{s}), 1.87(3 \mathrm{H}, \mathrm{s}), 1.83$ $(3 \mathrm{H}, \mathrm{s}), 1.77(3 \mathrm{H}, \mathrm{s}), 1.75(3 \mathrm{H}, \mathrm{s}), 1.68(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 170.5,170.4,170.1,170.0,169.9,169.8,169.6,169.5,103.9,78.8,75.7,74.7,74.5,72.1$, $71.9,70.4,63.6,63.4,61.2,39.2,20.8,20.7,20.6,20.6$ (2C), 20.5 (2C), 20.5. IR (film): 2960, 1747 cm^{-1}. MS (FAB) $m / z: 717[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{18} \mathrm{SNa}$, 717.1677; found, 717.1669.

$\boldsymbol{\beta}$-D-Fructofuranosyl 5-thio- $\boldsymbol{\alpha}$-D-glucopyranoside (1). To a solution of compound $\mathbf{1 8} \mathbf{(5 7 . 7 \mathrm { mg } \text { , }}$ $83.1 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(2.5 \mathrm{~mL})$ was added 0.1 M solution of sodium methoxide in $\mathrm{MeOH}(83 \mu \mathrm{~L}$, $8.3 \mu \mathrm{~mol}$) and the reaction mixture was stirred for 3 h at room temperature. After neutralization with Amberlite FPC3500, the mixture was stirred for 10 min , then diluted with water and filtered through a membrane filter. Lyophilization of the aqueous solution afforded $1(29.5 \mathrm{mg})$ in 99% yield. White solid. $R_{\mathrm{f}}=0.36\left(25 \% \mathrm{H}_{2} \mathrm{O}\right.$ in MeCN$) .[\alpha]^{20}{ }_{\mathrm{D}}+121.4$ (c 0.43, $\left.\mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta: 5.21\left(1 \mathrm{H}, \mathrm{d}, J_{1,2}=3.1 \mathrm{~Hz}, \mathrm{H}-1\right), 4.20\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4^{\prime}}=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.11\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}}\right.$ $\left.=8.8, J_{4^{\prime}, 5^{\prime}}=8.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.07\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 6^{\circ} \mathrm{b}}=12.1, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=7.3 \mathrm{~Hz}, \mathrm{H}-6{ }^{\prime} \mathrm{a}\right), 3.93\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}\right.$ $\left.=12.1, J_{5,6 \mathrm{a}}=5.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.89\left(1 \mathrm{H}, \mathrm{ddd}, J_{4^{\prime}, 5^{\prime}}=8.2, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=7.3, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=2.7 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 3.89(1 \mathrm{H}$, $\left.\mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.1, J_{5,6 \mathrm{~b}}=3.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.83\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 6^{\prime} \mathrm{b}}=12.1, J_{5^{\prime}, 6^{\circ} \mathrm{b}}=2.7 \mathrm{~Hz}, \mathrm{H}-6{ }^{\prime} \mathrm{b}\right), 3.78(1 \mathrm{H}$, dd, $\left.J_{2,3}=9.6, J_{1,2}=3.1 \mathrm{~Hz}, \mathrm{H}-2\right), 3.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1{ }^{\prime}\right), 3.70\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=9.6, J_{3,4}=8.9 \mathrm{~Hz}, \mathrm{H}-3\right)$, $3.62\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=10.3, J_{3,4}=8.9 \mathrm{~Hz}, \mathrm{H}-4\right), 3.26\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5}=10.3, J_{5,6 \mathrm{a}}=5.5, J_{5,6 \mathrm{~b}}=3.4 \mathrm{~Hz}\right.$, $\mathrm{H}-5) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta: 103.8,81.4,77.0,75.1,74.2,74.0,73.8,73.4,62.1,60.7$, 60.1, 43.5. IR (KBr): 3398, $2931 \mathrm{~cm}^{-1}$. MS (FAB) $m / z: 381[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (FAB) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{10} \mathrm{SNa}$, 381.0831; found, 381.0826.

7. Biological studies

$\boldsymbol{\alpha}$-Glucosidase inhibitory assays ${ }^{5}$: Rat small intestinal brush border membrane vesicles were prepared and its suspension in a 0.1 M maleate buffer (pH 6.0) was used to determine the small
intestinal α-glucosidase enzyme activity of maltase and sucrase. The enzyme suspension was properly diluted to hydrolyze maltose and sucrose to produce ca. 0.30 and ca. $0.15 \mu \mathrm{~mol} /$ tube of D-glucose, respectively, in the following reaction. The substrate solution in a 0.1 M maleate buffer (maltose: 74 mM or sucrose: $74 \mathrm{mM}, 50 \mu \mathrm{~L}$), test compound in a mixed solution of DMSO and 0.1 M maleate buffer ($1: 4,25 \mu \mathrm{~L}$), and the enzyme solution ($\mathrm{pH} 6.0,25 \mu \mathrm{~L}$) were incubated together at $37^{\circ} \mathrm{C}$. After 30 min of incubation, 0.4 mL of water was added to the test tube, and the test tube was immediately immersed in boiling water for 2 min to stop the reaction and then cooled with ice-water bath. The glucose concentration was determined using the glucose-oxidase method. Measurements were performed in duplicate.

ŌBn ÓBn
${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

8b
${ }^{13}{ }^{\prime}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{C}_{6} \mathrm{D}_{6}, 125 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

| 1 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :--- |

\pm		®ワ\％
$\stackrel{7}{7}$		－
I	｜〈心1／！	$11 /$

\circ
0
0
0

11
${ }^{1} \mathrm{H}, \mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$

11
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

		1	1		1	1	1		T	1	,	1	,	1	,	1		1	1		
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

| 0 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | |
| :--- |

	190	180	170		150		130	120		100											
) 0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	

 -ind -108.3

888

15
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

| 19 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :--- |

16
${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

욱욱머웅

18
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

| 190 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :--- |

