Supporting Information

17 Corresponding Author: *mazali@unicamp.brOdone Mazali*Raman spectroscopy-in situ characterization of reversibly intercalatedoxygen vacancies in $\boldsymbol{\alpha}-\mathrm{MoO}_{3}$Isaías de Castro Silva, Alice Cosenza Reinaldo, Fernando Aparecido Sigoli and ItaloLaboratory of Functional Materials- Institute of Chemistry, University of Campinas -UNICAMP, P.O. Box 6154, 13083-970, Campinas - SP, Brazil

19 Table S1. Indexation of the diffraction peaks of the MoO_{3} sample observed at $22{ }^{\circ} \mathrm{C}$ under $2020 \% \mathrm{O}_{2} / \mathrm{He}$, according to ICDD files 5-0508 $\left(\alpha-\mathrm{MoO}_{3}\right)$ and 47-1320 $\left(\beta-\mathrm{MoO}_{3}\right)$.

$20\left({ }^{\circ}\right.$)	$\mathbf{d}_{\text {hkl }}(\AA)$	Indexing
12.824	6.94	(020) $\alpha-\mathrm{MoO}_{3}$
23.460	3.81	(110) $\alpha-\mathrm{MoO}_{3}$
25.818	3.47	(040) $\alpha-\mathrm{MoO}_{3}$
27.432	3.268	(021) $\alpha-\mathrm{MoO}_{3}$
29.526	3.041	(130) $\alpha-\mathrm{MoO}_{3}$
33.278	2.706	(101) $\alpha-\mathrm{MoO}_{3}$
33.834	2.663	(111) $\alpha-\mathrm{MoO}_{3}$
35.636	2.532	(041) $\alpha-\mathrm{MoO}_{3}$
39.152	2.313	(060) $\alpha-\mathrm{MoO}_{3}$
39.944	2.269	(150) $\alpha-\mathrm{MoO}_{3}$
45.986	1.984	(200) $\alpha-\mathrm{MoO}_{3}$
46.536	1.962	(210) $\alpha-\mathrm{MoO}_{3}$
48.470	1.888	($20-2$) $\boldsymbol{\beta}-\mathrm{MoO}_{3}$
49.470	1.852	(002) $\alpha-\mathrm{MoO}_{3}$
51.332	1.789	(021) $\boldsymbol{\beta}-\mathrm{MoO}_{3}$
52.278	1.759	(161) $\alpha-\mathrm{MoO}_{3}$
52.638	1.748	(201) $\boldsymbol{\beta - \mathrm { MoO } _ { 3 }}$
53.070	1.735	(211) $\alpha-\mathrm{MoO}_{3}$
54.018	1.706	(221) $\alpha-\mathrm{MoO}_{3}$
55.446	1.666	(112) $\alpha-\mathrm{MoO}_{3}$
56.630	1.634	(042) $\alpha-\mathrm{MoO}_{3}$
57.906	1.601	(171) $\alpha-\mathrm{MoO}_{3}$
59.124	1.571	(081) $\alpha-\mathrm{MoO}_{3}$
64.830	1.446	(062) $\alpha-\mathrm{MoO}_{3}$
65.210	1.438	(190) $\alpha-\mathrm{MoO}_{3}$
67.908	1.387	(0 10 0) $\alpha-\mathrm{MoO}_{3}$
69.860	1.353	(202) $\alpha-\mathrm{MoO}_{3}$

23 Figure $\mathrm{S} 1 . \mathrm{T}_{\mathrm{b}}$ Raman band frequency as a function of temperature for $\alpha-\mathrm{MoO}_{3}$ under O_{2}.

Figure S2. Diffractograms of MoO_{3} sample obtained at $400^{\circ} \mathrm{C}$. The blue ones were obtained after O_{2} exposure, and the red ones were obtained after H_{2} exposure.

Figure S3. Amplification of diffractograms in Figure S2 to show peaks displacements. The blue ones were obtained after O_{2} exposure, and the red ones were obtained after H_{2} exposure. The last peak could not be indexed (k).

