Supplementary Information Effluent of Cooking with Active Oxygen and Solid Alkali (CAOSA): Components Separation, Recovery and Characterization

Ning Ding^a, Huai Liu^a, Xianhai Zeng^{*ab}, Yong Sun^{ab}, Xing Tang^{ab}, Lu Lin^{*ab}

^a College of Energy, Xiamen University, Xiamen 361102, PR China.

^b Fujian Engineering and Research Center of Clean and High-valued Technologies for

Biomass; Xiamen Key Laboratory of Clean and High-valued Applications of Biomass;

Xiamen University, Xiamen 361102, PR China.

* Corresponding Authors:

Xianhai Zeng: Tel/Fax: +86-592-2880701; Email: xianhai.zeng@xmu.edu.cn.

Lu Lin: Tel/Fax: +86-592-2880702, Email: <u>lulin@xmu.edu.cn.</u>

S1. Figures

Figure S1 GPC results of YL/Pre-E/Pre-A-E

S2. Tables

Entry	Dry components in	Precipitates in YL dry components/%			
	YL/%	Pre-E	Pre-E-A	Pre-A	Pre-A-E
1	10.52	82.83	1.59	15.55	4.31
2	11.13	81.77	1.66	15.47	4.23
3	10.73	81.36	1.81	15.49	4.33
4	10.99	81.64	1.73	15.44	4.34
5	10.39	81.73	1.81	15.41	4.28
Average	10.75	81.87	1.72	15.47	4.30

Table S1 Dry components and precipitates in YL

Entry	Ash content/%				
Ениу	YL	Pre-E	Pre-E-A	Pre-A	Pre-A-E
1	25.23	27.03	3.35	1.63	0.81
2	25.77	27.58	3.78	1.64	0.88
3	25.06	28.21	3.82	1.7	0.84
Average	25.35	27.61	3.65	1.66	0.84

Table S2 Ash contents of YL dry components and precipitates

Label	δ_{C}/δ_{H} (ppm)	Assignments
C _β	53.1/3.46	C_{β} -H _{β} in phenylcoumaran (C)
$\mathbf{B}_{\boldsymbol{\beta}}$	53.5/3.07	C_{β} - H_{β} in β - β (resinol) (B)
OCH ₃	56.4/3.70	C-H in methoxyls
A_{γ}	59.9/3.35-3.80	C_{γ} -H _{γ} in β -O-4 substructures (A)
A'_{γ}	63.0/4.36	C_{γ} -H _{γ} in γ -acylated β -O-4 (A')
C_{γ}	62.2/3.76	C_{γ} -H _{γ} in phenylcoumaran (C)
\mathbf{B}_{γ}	71.2/3.82-4.18	C_{γ} - H_{γ} in β - β (resinol) (B)
A_{α}	71.8/4.86	C_{α} -H _{α} in β -O-4 unit (A)
$A_{\beta}(G)$	83.4/4.38	C_{β} -H _{β} in β -O-4 linked to G (A)
B_{α}	84.8/4.66	C_{α} - H_{α} in β - β (resinol) (B)
$A'_{\beta}(G)$	80.8/4.52	C_{β} -H _{β} in β -O-4 linked to G (A')
$A_{\beta}(S)$	85.8/4.12	C_{β} -H _{β} in β -O-4 linked to S (A)
C_{α}	86.8/5.45	C_{α} -H _{α} in phenylcoumaran (C)
T' _{2,6}	103.9/7.34	C' _{2,6} -H' _{2,6} in tricin (T)
T_6	98.9/6.23	$C_{2,6}$ - $H_{2,6}$ in tricin (T)
T_8	94.2/6.60	C_8 - H_8 in tricin (T)
T_3	106.2/7.07	C_3 - H_3 in tricin (T)
S _{2,6}	103.9/6.70	C _{2,6} -H _{2,6} in syringyl unit (S)
S' _{2,6}	106.3/7.32	C _{2,6} -H _{2,6} in oxidized S unit (S)
G_2	110.8/6/97	C ₂ -H ₂ in guaiacyl unit (G)
G_5	114.5/6.70	C ₅ -H ₅ in guaiacyl unit (G)
G ₆	119.0/6.78	C ₆ -H ₆ in guaiacyl unit (G)
H26	127.7/7.17	$C_{2,6}$ -H _{2,6} in p-hydroxyphenyl unit
2,0		(H)
PCE _{3,5}	115.6/6.77	C _{3,5} -H _{3,5} in p-Coumarates (PCE)
PCE _{2,6}	130.2/7.48	C _{2,6} -H _{2,6} in p-Coumarates (PCE)

Table S3 Assignments of main ¹³C-¹H cross-signals in the HSQC spectra of

MWL

PCE ₇	144.8/7.51	C ₇ -H ₇ in p-Coumarates (PCE)
PCE ₈	113.7/6.24	C ₈ -H ₈ in p-Coumarates (PCE)
FA_2	110.7/7.35	C ₂ -H ₂ in p-Ferulate (FA)
FA ₆	123.1/7.20	C ₆ -H ₆ in p-Ferulate (FA)
FA_7	144.8/7.51	C ₇ -H ₇ in p-Ferulate (FA)

Entry	Wavenumber(cm ⁻¹)	Functional group		
1	3412-3460	O-H stretch		
2	3000-2842	C-H stretch in methyl and methylene groups		
3	2900	C-H aliphatic axial deformation		
4	2865	C-H of methoxy group		
5	1738-1709	C=O stretch in unconjugated ketone, carbonyl		
		and in ester groups; conjugated aldehydes and		
		carboxylic acids absorb around and below 1700		
		cm-1		
	1655-1675	C=O stretch ; in conjugated p-subst. aryl ketones;		
6		strong electronegative substituents lower the		
		wavenumber		
_	1593-1605	aromatic skeletal vibrations plus C=O stretch; S		
/		> G; G condensed > G etherified		
8	1505-1515	aromatic skeletal vibrations; G > S		
9	1460-1470	C-H deformations; asym. in -CH3 and -CH2-		
10	1422-1430	aromatic skeletal vibrations combined with C-H		
10		in-plane deform		
1.1	1365-1370	aliphatic C-H stretch in CH3, not in OMe; phen.		
11		ОН		
12	1325-1330	S ring plus G ring condensed		
13	1266-1270	G ring plus C=O stretch		
14	1221-1230	C-C plus C-O plus C=O stretch; G condensed >		
		G etherified		
15	1166	typical for HGS lignins; C=O in ester groups		
		(conj.)		
16	1140	aromatic C-H in-plane deformation; typical for G		
16		units; whereby G condensed > etherified (typica		

Table S4 Band assignment of lignin in FTIR spectra

		for S units); plus secondary alcohol plus C=O
		stretch
17	1096	C-O deformation in secondary alcohols and
	1080	aliphatics ethers
		aromatic C-H in-plane deformation, G > S; plus
18	1030-1035	C-O deform, in primary alcohols; plus C=O
		stretch (conj.)
19	966-990	-CH=CH- out-of-plane deform
20	915-925	C-H out-of-plane; aromatic
21	853-858	C-H out-of-plane in position 2,5, and 6 of G units
22	024 025	C-H out-of-plane in position 2,6 of S and in all
	834-833	position of H units
23	817-832	C-H out-of-plane in positions 2,5 and 6 of G
		units