Mixed Tb/Dy coordination ladders based on tetra(carboxymethyl)thiacalix[4]arene: a new avenue towards luminescent molecular nanomagnets

A.S. Ovsyannikov, ${ }^{* a}$ I.V. Khariushin, ${ }^{\text {b }}$ S.E. Solovieva, ${ }^{\text {a }}$ I.S. Antipin, ${ }^{\text {b }}$ H. Komiya, ${ }^{\text {c }}$ N. Marets, ${ }^{\text {c }}$ H. Tanaka, ${ }^{\text {c H. }}$

Electronic Supplementary Information

Shape analysis

HL3-Tb

Tb eight coordinated complex
OP-8 1 D8h Octagon
HPY-8 2 C7v Heptagonal pyramid
HBPY-83 D6h Hexagonal bipyramid
CU-8 4 Oh Cube
SAPR-85 D4d Square antiprism
TDD-86 D2d Triangular dodecahedron
JGBF-87 D2d Johnson gyrobifastigium J26
JETBPY-8 8 D3h Johnson elongated triangular bipyramid J14
JBTPR-8 9 C2v Biaugmented trigonal prism J50
BTPR-8 10 C2v Biaugmented trigonal prism
JSD-811 D2d Snub diphenoid J84
TT-8 12 Td Triakis tetrahedron
ETBPY-8 13 D3h Elongated trigonal bipyramid

Structure $[$ ML8 $]$	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8
	29.644	18.199	20.071	16.741	10.581	8.788	19.337	23.652	11.471	11.129	12.706	17.0 18	25.830

HL3-Dy

Dy eight coordinated complex
OP-8 1 D8h Octagon
HPY-8 2 C7v Heptagonal pyramid
HBPY-83 D6h Hexagonal bipyramid
CU-8 4 Oh Cube
SAPR-85 D4d Square antiprism
TDD-86 D2d Triangular dodecahedron
JGBF-87 D2d Johnson gyrobifastigium J26
JETBPY-8 8 D3h Johnson elongated triangular bipyramid J14
JBTPR-8 9 C2v Biaugmented trigonal prism J50
BTPR-8 10 C 2 v Biaugmented trigonal prism
JSD-811 D2d Snub diphenoid J84
TT-8 12 Td Triakis tetrahedron
ETBPY-8 13 D3h Elongated trigonal bipyramid

| Structure
 $[$ ML8 $]$ | OP-8 | HPY-8 | HBPY-8 | CU-8 | SAPR-8 | TDD-8 | JGBF-8 | JETBPY-8 | JBTPR-8 | BTPR-8 | JSD-8 | TT-8 | ETBPY-8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 29.589 | 18.053 | 19.856 | 16.547 | 10.377 | 8.656 | 19.403 | 23.683 | 11.373 | 10.954 | 12.658 | 16.846 | 25.838 |

	All compounds triclinic, space group P-1	
HL3-Tb	$\begin{aligned} & a=15.0160(17) \\ & b=15.9630(14) \\ & c=16.7660(16) \end{aligned}$	$\begin{gathered} \alpha=62.226(3) \\ \beta=67.513(3) \\ \gamma=79.132(4)^{\circ} \\ V=3285.2(6) \end{gathered}$
HL3-Tb ${ }_{0.95} \mathbf{D y}_{0.05}$	$\begin{aligned} & a=15.01 \\ & b=15.97 \\ & c=16.76 \end{aligned}$	$\begin{aligned} \alpha & =62.23 \\ \beta & =67.54 \\ \gamma & =79.14 \\ V & =3284.9 \end{aligned}$
HL3-Tb ${ }_{0.67} \mathbf{D y}_{0.33}$	$\begin{aligned} & a=15.00 \\ & b=15.98 \\ & c=16.75 \end{aligned}$	$\begin{gathered} \alpha=62.21 \\ \beta=67.56 \\ \gamma=79.2 \\ V=3282.7 \end{gathered}$
HL3-Tb ${ }_{0.42}$ Dy $_{0.58}$	$\begin{aligned} & a=15.02 \\ & b=15.97 \\ & c=16.74 \end{aligned}$	$\begin{aligned} \alpha & =62.22 \\ \beta & =67.55 \\ \gamma & =79.17 \\ V & =3283.1 \end{aligned}$
HL3-Tb ${ }_{0.20} \mathbf{D y}_{0.80}$	$\begin{aligned} & a=15.01 \\ & b=15.98 \\ & c=16.74 \end{aligned}$	$\begin{aligned} \alpha & =62.23 \\ \beta & =67.55 \\ \gamma & =79.19 \\ V & =3283.3 \end{aligned}$
HL3-Tb ${ }_{0.07} \mathbf{D y}_{0.93}$	$\begin{aligned} & a=15.02 \\ & b=15.97 \\ & c=16.75 \end{aligned}$	$\begin{aligned} \alpha & =62.21 \\ \beta & =67.56 \\ \gamma & =79.17 \\ V & =3285.0 \end{aligned}$
HL3-Dy	$\begin{gathered} a=15.0091(17) \\ b=15.9798(18) \\ c=16.7401(18) \AA \end{gathered}$	$\begin{aligned} & \alpha=62.217(5) \\ & \beta=67.626(5) \\ & \gamma=79.181(6) \\ & V=3284.5(7) \end{aligned}$

EDS analysis

 $\mathbf{T b}_{0.95} \mathbf{D y}_{0.05}$ were analyzed after having been mixed with graphite matrix.

- HL3-Tb $\mathbf{0 . 0 7} \mathrm{Dy}_{0.93}$

Element	Series	[at.\%]	Sigma
0	K-series	5.79	0.29
S	K-series	1.55	1.45
Tb	L-series	0.01	0.01
Dy	L-series	0.14	0.15

- HL3-Tb $_{0.20}$ Dy $_{0.80}$

Element	Series	[at.\%]	Sigma
0	K-series	7.50	0.35
S	K-series	2.46	1.32
Tb	L-series	0.06	0.02
Dy	L-series	0.23	0.15

- HL3-Tb $\mathbf{0 . 4 2}$ Dy $_{0.58}$

Element	Series	[at.\%]	Sigma
O	K-series	6.21	0.29
S	K-series	1.37	1,41
Tb	L-series	0.06	0.02
Dy	L-series	0.08	0.12

- $\mathbf{H L 3}-\mathbf{T b}_{0.67} \mathbf{D y}_{0.33}$

Element	Series	[at.\%]	Sigma
O	K-series	5.70	0.35
S	K-series	0.99	1,22
Tb	L-series	0.08	0.01
Dy	L-series	0.04	0.13

- HL3-Tb $\mathbf{0 . 9 5}^{\text {D }} \mathbf{D y}_{0.05}$

Element	Series	[at.\%]	Sigma
O	K-series	9.63	0.42
S	K-series	2.76	1,27
Tb	L-series	0.32	0.01
Dy	L-series	0.02	0.15

Excitation spectra

Figure S1: Excitation spectra of HL3-Tb ($\lambda_{\mathrm{em}}=534 \mathrm{~nm}$) (top) and HL3-Dy ($\lambda_{\mathrm{em}}=576 \mathrm{~nm}$) (bottom) at RT.

Emission spectra

(a)

(b)

Figure S2: Emission spectra $\left(\lambda_{\mathrm{ex}}=350 \mathrm{~nm}\right)$ of HL3-Tb (a) and HL3-Dy (b) at 77K.

Figure S3: Luminescence spectra observed with absolute luminescence quantum yields spectroscopy, C9920-02 ($\lambda_{\mathrm{ex}}=350 \mathrm{~nm}$) of HL3-Tb1-x Dy at (a) rt) and (b) 77K.

Table S2: Lifetimes and fit parameters (amplitude; $\lambda_{\mathrm{ex}}=340 \mathrm{~nm}, \lambda_{\mathrm{em}}=543$ and 574 nm) of f-f electron transitions for $\mathbf{H L 3}-\mathbf{T b}_{1-x} \mathbf{D} \mathbf{y}_{x}$ solid solutions at room temperature.

Compound	$\lambda_{m}(\mathrm{~nm})$	$\tau_{1}(\mathrm{~ms})$	A_{1}	$\tau_{2}(\mathrm{~ms})$	A_{2}	R
HL3-Tb	543	0.866	100\%			1.17
HL3-Tb ${ }_{0.94} \mathrm{Dy}_{0.06}$	543	0.803	100\%			1.31
HL3-Tb ${ }_{0.67} \mathrm{Dy}_{0.33}$	543	0.470	44.5\%	1.096	55.5\%	1.24
	574	0.011	99.5\%	0.575	0.5\%	1.03
HL3-Tb ${ }_{0.42} \mathrm{Dy}_{0.58}$	543	0.379	42.2\%	0.912	57.8\%	1.15
	574	0.016	97.6\%	0.615	2.4\%	1.11
HL3-Tb ${ }_{0.20}$ Dy $_{0.80}$	543	0.378	41.2\%	0.932	58.8\%	1.19
	574	0.022	91.3\%	0.401	8.7\%	1.15
HL3-Tb ${ }_{0.07}$ Dy $_{0.93}$	543	0.335	39.1\%	0.857	60.9\%	1.04
	574	0.030	94.9\%	0.560	5.1\%	1.05
HL3-Dy	574	n.d.				

${ }^{a}$ due to apparatus

Table S3: Lifetimes and fit parameters (amplitude; $\lambda_{\mathrm{ex}}=340 \mathrm{~nm}, \lambda_{\mathrm{em}}=543$ and 574 nm) for of $\mathrm{f}-\mathrm{f}$ electon transitions for $\mathbf{H L 3}-\mathbf{T b}_{1-\mathrm{x}} \mathbf{D} \mathbf{y}_{\mathrm{x}}$ solid solutions at 77 K .

Compound	$\begin{aligned} & \lambda_{\text {mon }} \\ & (\mathrm{nm}) \\ & \hline \end{aligned}$	$\tau_{1}(\mathrm{~ms})$	A_{1}	$\tau_{2}(\mathrm{~ms})$	A_{2}	R
HL3-Tb	543	0.916	100\%			1.21
HL3-Tb ${ }_{0.94} \mathrm{Dy}_{0.06}$	543	0.878	100\%			1.22
HL3-Tb ${ }_{0.67} \mathrm{Dy}_{0.33}$	543	0.894	76.0\%	1.571	24.0\%	1.15
	574	0.012	99.1\%	1.012	0.9\%	1.02
HL3-Tb ${ }_{0.42} \mathrm{Dy}_{0.58}$	543	0.782	75.4\%	1.200	24.6\%	1.04
	574	0.008	99.1\%	0.870	0.9\%	1.32
HL3-Tb ${ }_{0.20} \mathrm{Dy}_{0.80}$	543	0.740	42.7\%	1.091	57.3\%	1.07
	574	0.083	41.8\%	0.915	58.2\%	1.01
HL3-Tb ${ }_{0.07} \mathrm{Dy}_{0.93}$	543	0.882	97.0\%	1.986	3.0\%	1.01
	574	n.d.				
HL3-Dy	574	n.d.				

[^0]

Figure S4: Luminescence decay curves for HL3-Tb ${ }_{1-x}$ Dy y_{x} solid solutions ($\lambda_{\text {ex }}: 340 \mathrm{~nm}$).

Figure S5: Luminescence decay curves for HL3-Tb ${ }_{1-x}$ Dy y_{x} solid solutions ($\lambda_{\text {ex }}: 340 \mathrm{~nm}$).

Figure S6: Luminescence decay curves for HL3-Tb ${ }_{1-x}$ Dy $_{x}$ solid solutions ($\lambda_{\text {ex }}$: 340 nm).

Figure S7. Complete magnetic-field-variable alternate-current (ac) magnetic susceptibility characteristics of HL3-Dy at $T=1.8 \mathrm{~K}$, under $H_{\mathrm{ac}}=1 \mathrm{Oe}$, and their analysis: frequency dependences of the out-of-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime \prime}(a)$, and the in-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime}(b)$ at various indicated $d c$ external magnetic fields, together with the related Argand plots (c), and the field dependence of the relaxation time, $\tau(d)$. Both field and relaxation time were presented in (d) in the logarithmic scale. Coloured solid curves in (a), (b), and (c) represent the best fits following the generalized Debye model for a single relaxation process.

The solid line in (d) shows the best fit taking into account quantum tunnelling of magnetization, and the direct process, in the range of 200-2000 Oe. The τ versus $H_{d c}$ dependence was fitted using the equation (e1):

$$
\begin{equation*}
\tau^{-1}=A T H^{4}+\frac{a\left(1+c^{2} H^{2}\right)}{\left(1+b H^{2}\right)} \tag{e1}
\end{equation*}
$$

where the first term represented by the A parameter is related to a field-induced direct process, while the second term represented by three parameters (a, b and c) is showing the contribution from quantum tunnelling of magnetization. Following the equation, the best-fit
parameters are: $A=1.43(5) \cdot 10^{-12} \mathrm{~s}^{-1} \mathrm{~K}^{-1} \mathrm{Oe}^{-4}, a=274(28) \mathrm{s}^{-1}, b=5.3(8) \cdot 10^{-5} \mathrm{Oe}^{-2}$, and $c=$ $1.7(3) \cdot 10^{-3} \mathrm{Oe}^{-1}$.
(a)

(c)

(b)

(d)

Figure S8. Complete temperature-variable alternate-current (ac) magnetic susceptibility characteristics of HL3-Dy under $\mathrm{Hac}=1 \mathrm{Oe}, \mathrm{Hdc}=1000 \mathrm{Oe}$, and their analysis: frequency dependences of the out-of-phase susceptibility, $\chi_{M}{ }^{\prime \prime}(\mathrm{a})$, and the in-phase susceptibility, $\chi_{M}{ }^{\prime}$
(b) at various indicated temperatures, together with the related Argand plots (c), and the temperature dependence of the relaxation time, τ (d). Coloured solid curves in (a), (b), and (c) represent the best fits using the generalized Debye model for a single relaxation process.

The solid black line in (d) represents the linear fitting following the Arrhenius law $\left(\ln \tau=\ln \tau_{0}+\right.$ $\left.\left(U_{\text {eff }} / k_{\mathrm{B}}\right) \cdot T^{-1}\right)$ in the range of $3.4-4.8 \mathrm{~K}$ extrapolated towards lower temperatures. The solid green line in (d) shows the best fit taking into account Orbach and Raman relaxation processes, together with a field-induced direct process and quantum tunnelling of magnetization (QTM), in the range of 1.8-4.8 K. Therefore, we followed the equation (e2):
$\tau^{-1}=\tau_{0}^{-1} \exp \left(-U_{e f f} / k_{B} T\right)+B_{\text {Raman }} T^{n}+\frac{a\left(1+c^{2} H^{2}\right)}{\left(1+b H^{2}\right)}+A T H^{4}$
where the first term with two fitting parameters ($\tau_{0}, U_{\text {eff }} / k_{\mathrm{B}}$) represents the Orbach thermal relaxation, the second term indicates the Raman process, the third term shows contribution from the QTM effect, while the last originates from ta field-induced direct process. Parameters extracted from the field-dependence of relaxation times at $1.8 \mathrm{~K}(A, a, b, c)$ were taken as constants to avoid over-parameterization. The best-fit parameters are: $U_{\text {eff }} / k_{\mathrm{B}}=31(3)$ $\mathrm{K}, \tau_{0}=1.2(7) \cdot 10^{-6} \mathrm{~s}, B_{\text {Raman }}=0.27(1) \mathrm{s}^{-1} \mathrm{~K}^{-n}$ and $n=6.0(3)$.

Comment to Figures S7 and S8

For the fitting of the frequency dependences of χ^{\prime} and $\chi^{\prime \prime}$ contributions to the ac magnetic susceptibility, and the related $\operatorname{Argand} \chi^{\prime \prime}\left(\chi^{\prime}\right)$ plots (Figures S7 and S 8), the following equations (e3 and e4) of the generalized Debye model for a single relaxation process were used:
$\chi^{\prime}(\omega)=\chi_{S}+\left(\chi_{T}-\chi_{S}\right) \frac{1+(\omega \tau)^{1-\alpha} \sin (\pi \alpha / 2)}{1+2(\omega \tau)^{1-\alpha} \sin (\pi \alpha / 2)+(\omega \tau)^{2(1-\alpha)}}$
$\chi^{\prime \prime}(\omega)=\left(\chi_{T}-\chi_{S}\right) \frac{(\omega \tau)^{1-\alpha} \cos (\pi \alpha / 2)}{1+2(\omega \tau)^{1-\alpha} \sin (\pi \alpha / 2)+(\omega \tau)^{2(1-\alpha)}}$
where
$\chi_{\mathrm{S}}=$ the adiabatic susceptibility (at infinitely high frequency of ac field),
$\chi_{T}=$ the isothermal susceptibility (at infinitely low frequency of $a c$ field),
$\tau=$ the relaxation time,
$\alpha=$ the distribution (Cole-Cole) parameter,
and ω is an angular frequency, that is $\omega=2 \pi v$, with v being for the linear frequency in $[\mathrm{Hz}]$ units.

The results of the fittings according to the Debye model for a single relaxation process for $\mathbf{1}$ are shown in Figures $S 7(a-c)$ and $S 8(a-c)$. The resulting relaxation times (τ) were plotted against applied dc field at $T=1.8 \mathrm{~K}$ (Figure S 7 d) and against temperature under the applied $d c$ field of 1000 Oe (Figure S7 d).

[^0]: ${ }^{a}$ due to apparatus

