Mixed Tb/Dy coordination ladders based on tetra(carboxymethyl)thiacalix[4]arene: a new avenue towards luminescent molecular nanomagnets

A.S. Ovsyannikov, *a I.V. Khariushin, b S.E. Solovieva, a I.S. Antipin, b H. Komiya, C N. Marets, C H. Tanaka, C H. Ohmagari, C M. Hasegawa, J. J. Zakrzewski, S. Chorazy, N. Kyritsakas, M. W. Hosseini, S. Ferlay*e

Electronic Supplementary Information

Shape analysis

HL3-Tb

Tb eight coordinated complex

Structure [ML8]	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8
	29.644	18.199	20.071	16.741	10.581	8.788	19.337	23.652	11.471	11.129	12.706	17.0 18	25.830

HL3-Dy

Dy eight coordinated complex

OP-8 1 D8h Octagon
HPY-8 2 C7v Heptagonal pyramid
HBPY-83 D6h Hexagonal bipyramid
CU-8 4 Oh Cube
SAPR-85 D4d Square antiprism
TDD-8 6 D2d Triangular dodecahedron
JGBF-87 D2d Johnson gyrobifastigium J26
JETBPY-8 8 D3h Johnson elongated triangular bipyramid J14
JBTPR-8 9 C2v Biaugmented trigonal prism J50
BTPR-8 10 C2v Biaugmented trigonal prism
JSD-811 D2d Snub diphenoid J84
TT-8 12 Td Triakis tetrahedron
ETBPY-8 13 D3h Elongated trigonal bipyramid

Structure [ML8]	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8
	29.589	18.053	19.856	16.547	10.377	8.656	19.403	23.683	11.373	10.954	12.658	16.846	25.838

	All compounds triclinic	, space group P-1
HL3-Tb	a = 15.0160(17)	α = 62.226(3)
	b = 15.9630(14)	$\beta = 67.513(3)$
	c = 16.7660(16)	$\gamma = 79.132(4)^{\circ}$
		V = 3285.2(6)
HL3-Tb _{0.95} Dy _{0.05}	a = 15.01	α = 62.23
	b = 15.97	β = 67.54
	c = 16.76	γ = 79.14
		V = 3284.9
HL3-Tb _{0.67} Dy _{0.33}	a = 15.00	α = 62.21
	b = 15.98	β = 67.56
	c = 16.75	γ = 79.2
		V = 3282.7
HL3-Tb _{0.42} Dy _{0.58}	a = 15.02	α = 62.22
	b = 15.97	β = 67.55
	c = 16.74	γ = 79.17
		V = 3283.1
HL3-Tb _{0.20} Dy _{0.80}	a = 15.01	α = 62.23
	b = 15.98	β = 67.55
	c = 16.74	γ = 79.19
		V = 3283.3
HL3-Tb _{0.07} Dy _{0.93}	a = 15.02	α = 62.21
	b = 15.97	β = 67.56
	c = 16.75	γ = 79.17
		V = 3285.0
HL3-Dy	a = 15.0091(17)	α = 62.217(5)
	b = 15.9798(18)	$\beta = 67.626(5)$
	c = 16.7401(18) A	γ = 79.181(6)
		V = 3284.5(7)

EDS analysis

Samples HL3-Tb_{0.07}Dy_{0.93}, HL3-Tb_{0.20}Dy_{0.80}, HL3-Tb_{0.42}Dy_{0.58}, HL3-Tb_{0.67}Dy_{0.33} and HL3-Tb_{0.95}Dy_{0.05} were analyzed after having been mixed with graphite matrix.

- HL3-Tb_{0.07}Dy_{0.93}

Element	Series	[at.%]	Sigma
0	K-series	5.79	0.29
S	K-series	1.55	1.45
Tb	L-series	0.01	0.01
Dy	L-series	0.14	0.15

- HL3-Tb_{0.20}Dy_{0.80}

Element	Series	[at.%]	Sigma
0	K-series	7.50	0.35
S	K-series	2.46	1,32
Tb	L-series	0.06	0.02
Dy	L-series	0.23	0.15

- HL3-Tb_{0.42}Dy_{0.58}

Element	Element Series		Sigma
0	K-series	6.21	0.29
S	K-series	1.37	1,41
Tb	L-series	0.06	0.02
Dy	L-series	0.08	0.12

HL3-Tb_{0.67}Dy_{0.33}

-

Element	Series	[at.%]	Sigma
0	K-series	5.70	0.35
S	K-series	0.99	1,22
Tb	L-series	0.08	0.01
Dy	L-series	0.04	0.13

- HL3-Tb_{0.95}Dy_{0.05}

Element	Series	[at.%]	Sigma
0	K-series	9.63	0.42
S	K-series	2.76	1,27
Tb	L-series	0.32	0.01
Dy	L-series	0.02	0.15

Excitation spectra

Figure S1: Excitation spectra of HL3-Tb (λ_{em} = 534 nm) (top) and HL3-Dy (λ_{em} = 576 nm) (bottom) at RT.

Figure S2: Emission spectra (λ_{ex} = 350 nm) of HL3-Tb (a) and HL3-Dy (b) at 77K.

Figure S3: Luminescence spectra observed with absolute luminescence quantum yields spectroscopy, C9920-02 (λ_{ex} = 350 nm) of HL3-Tb1-x Dy at (a) rt) and (b) 77K.

Compound	λ _m (nm)	τ ₁ (ms)	A1	τ ₂ (ms)	A ₂	R
HL3-Tb	543	0.866	100%			1.17
HL3-Tb _{0.94} Dy _{0.06}	543	0.803	100%			1.31
	543	0.470	44.5%	1.096	55.5%	1.24
HL3-10 _{0.67} Dy _{0.33}	574	0.011	99.5%	0.575	0.5%	1.03
	543	0.379	42.2%	0.912	57.8%	1.15
HL3-10 _{0.42} Dy _{0.58}	574	0.016	97.6%	0.615	2.4%	1.11
	543	0.378	41.2%	0.932	58.8%	1.19
HL3-10 _{0.20} Dy _{0.80}	574	0.022	91.3%	0.401	8.7%	1.15
	543	0.335	39.1%	0.857	60.9%	1.04
псэ-тр _{0.07} D у _{0.93}	574	0.030	94.9%	0.560	5.1%	1.05
HL3-Dy	574	n.d.				

Table S2: Lifetimes and fit parameters (amplitude; $\lambda_{ex} = 340 \text{ nm}$, $\lambda_{em} = 543 \text{ and } 574 \text{ nm}$) of f-f electron transitions for **HL3-Tb**_{1-x}**Dy**_x solid solutions at room temperature.

^{*a*} due to apparatus

Table S3: Lifetimes and fit parameters (amplitude; λ_{ex} = 340 nm, λ_{em} = 543 and 574 nm) forof f-f electon transitions for HL3-Tb_{1-x}Dy_x solid solutions at 77K.

Compound	λ _{mon} (nm)	τ ₁ (ms)	A ₁	τ ₂ (ms)	A ₂	R
HL3-Tb	543	0.916	100%			1.21
HL3-Tb _{0.94} Dy _{0.06}	543	0.878	100%			1.22
	543	0.894	76.0%	1.571	24.0%	1.15
HL3-1D _{0.67} DY _{0.33}	574	0.012	99.1%	1.012	0.9%	1.02
	543	0.782	75.4%	1.200	24.6%	1.04
HLS-10 _{0.42} Dy _{0.58}	574	0.008	99.1%	0.870	0.9%	1.32
	543	0.740	42.7%	1.091	57.3%	1.07
HLS-10 _{0.20} Dy _{0.80}	574	0.083	41.8%	0.915	58.2%	1.01
	543	0.882	97.0%	1.986	3.0%	1.01
HL3-10 _{0.07} Dy _{0.93}	574	n.d.				
HL3-Dy	574	n.d.				

^{*a*} due to apparatus

Figure S4: Luminescence decay curves for HL3-Tb_{1-x}Dy_x solid solutions (λ_{ex} : 340 nm).

Figure S5: Luminescence decay curves for **HL3**-**Tb**_{1-x}**Dy**_x solid solutions (λ_{ex} : 340 nm).

Figure S6: Luminescence decay curves for HL3-Tb_{1-x}Dy_x solid solutions (λ_{ex} : 340 nm).

Figure S7. Complete magnetic-field-variable alternate-current (*ac*) magnetic susceptibility characteristics of **HL3-Dy** at T = 1.8 K, under $H_{ac} = 1$ Oe, and their analysis: frequency dependences of the out-of-phase susceptibility, χ_{M} " (*a*), and the in-phase susceptibility, χ_{M} (*b*) at various indicated *dc* external magnetic fields, together with the related Argand plots (*c*), and the field dependence of the relaxation time, τ (*d*). Both field and relaxation time were presented in (*d*) in the logarithmic scale. Coloured solid curves in (*a*), (*b*), and (*c*) represent the best fits following the generalized Debye model for a single relaxation process.

The solid line in (*d*) shows the best fit taking into account quantum tunnelling of magnetization, and the direct process, in the range of 200–2000 Oe. The τ versus H_{dc} dependence was fitted using the equation (e1):

$$\tau^{-1} = ATH^4 + \frac{a(1+c^2H^2)}{(1+bH^2)}$$
(e1)

where the first term represented by the *A* parameter is related to a field-induced direct process, while the second term represented by three parameters (a, b and c) is showing the contribution from quantum tunnelling of magnetization. Following the equation, the best-fit

parameters are: $A = 1.43(5) \cdot 10^{-12} \text{ s}^{-1}\text{K}^{-1}\text{Oe}^{-4}$, $a = 274(28) \text{ s}^{-1}$, $b = 5.3(8) \cdot 10^{-5} \text{ Oe}^{-2}$, and $c = 1.7(3) \cdot 10^{-3} \text{ Oe}^{-1}$.

Figure S8. Complete temperature-variable alternate-current (ac) magnetic susceptibility characteristics of **HL3-Dy** under Hac = 1 Oe, Hdc = 1000 Oe, and their analysis: frequency dependences of the out-of-phase susceptibility, χ_{M} " (a), and the in-phase susceptibility, χ_{M} (b) at various indicated temperatures, together with the related Argand plots (c), and the temperature dependence of the relaxation time, τ (d). Coloured solid curves in (a), (b), and (c) represent the best fits using the generalized Debye model for a single relaxation process.

The solid black line in (*d*) represents the linear fitting following the Arrhenius law ($\ln \tau = \ln \tau_0 + (U_{eff}/k_B) \cdot T^{-1}$) in the range of 3.4–4.8 K extrapolated towards lower temperatures. The solid green line in (*d*) shows the best fit taking into account Orbach and Raman relaxation processes, together with a field-induced direct process and quantum tunnelling of magnetization (QTM), in the range of 1.8–4.8 K. Therefore, we followed the equation (e2):

$$\tau^{-1} = \tau_0^{-1} exp^{[m]} (-U_{eff}/k_B T) + B_{Raman} T^n + \frac{a(1+c^2H^2)}{(1+bH^2)} + ATH^4$$
(e2)

where the first term with two fitting parameters (τ_0 , U_{eff}/k_B) represents the Orbach thermal relaxation, the second term indicates the Raman process, the third term shows contribution from the QTM effect, while the last originates from ta field-induced direct process. Parameters extracted from the field-dependence of relaxation times at 1.8 K (A, a, b, c) were taken as constants to avoid over-parameterization. The best-fit parameters are: $U_{eff}/k_B = 31(3)$ K, $\tau_0 = 1.2(7) \cdot 10^{-6}$ s, $B_{Raman} = 0.27(1)$ s⁻¹K⁻ⁿ and n = 6.0(3).

Comment to Figures S7 and S8

For the fitting of the frequency dependences of χ' and χ'' contributions to the *ac* magnetic susceptibility, and the related Argand $\chi''(\chi')$ plots (Figures S7 and S8), the following equations (e3 and e4) of the generalized Debye model for a single relaxation process were used:

$$\chi'(\omega) = \chi_{S} + (\chi_{T} - \chi_{S}) \frac{1 + (\omega\tau)^{1 - \alpha} \sin\left(\frac{\pi\alpha}{2}\right)}{1 + 2(\omega\tau)^{1 - \alpha} \sin\left(\frac{\pi\alpha}{2}\right) + (\omega\tau)^{2(1 - \alpha)}}$$
(e3)
$$\chi''(\omega) = (\chi_{T} - \chi_{S}) \frac{(\omega\tau)^{1 - \alpha} \cos\left(\frac{\pi\alpha}{2}\right)}{1 + 2(\omega\tau)^{1 - \alpha} \sin\left(\frac{\pi\alpha}{2}\right) + (\omega\tau)^{2(1 - \alpha)}}$$
(e4)

where

 $\chi_{\rm S}$ = the adiabatic susceptibility (at infinitely high frequency of *ac* field), $\chi_{\rm T}$ = the isothermal susceptibility (at infinitely low frequency of *ac* field), τ = the relaxation time,

 α = the distribution (Cole-Cole) parameter,

and ω is an angular frequency, that is $\omega = 2\pi v$, with v being for the linear frequency in [Hz] units.

The results of the fittings according to the Debye model for a single relaxation process for **1** are shown in Figures S7 (a–c) and S8 (a–c). The resulting relaxation times (τ) were plotted against applied dc field at T = 1.8 K (Figure S7 d) and against temperature under the applied dc field of 1000 Oe (Figure S7 d).