

Supporting Information

Understanding the mechanism of the competitive adsorption in 8-methylquinoline hydrogenation over Ru catalyst

Yuan Dong^a, Haoming Zhao^a, Zhenjie Liu^a, Ming Yang^{*a,b}, Zhenlin Zhang^a, Ting Zhu^a and Hansong Cheng^{*a}

^a Sustainable Energy Laboratory, Faculty of Materials science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China

^b Zhejiang Institute, China University of Geosciences, Hangzhou 311305, P. R. China

*Corresponding authors. Tel./fax: +86 2767883049. E-mail address: yangming8180@gmail.com (M. Yang). chenghs@cug.edu.cn (H. Cheng).

The structure of the produced 4H-8-MQL from 8-MQL hydrogenation was determined by H^1 NMR, which was displayed in Figure S1. H^1 NMR (400 MHz, $CDCl_3$, 298k): δ 6.86 (d, J = 7.3 Hz, 1H), 6.83 (d, J = 7.5 Hz, 1H), 6.54 (t, J = 7.4 Hz, 1H), 3.37 - 3.34 (m, 2H), 2.77 (t, J = 6.4 Hz, 2H), 2.06 (s, 3H), 1.95 - 1.90 (m, 2H).

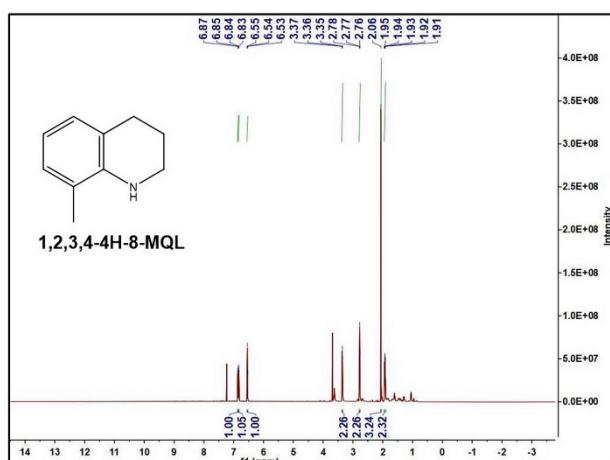


Figure S1. The structure of 4H-8-MQL detected by H^1 NMR.

The influences of temperature and pressure on hydrogenation rates of 8-MQL were investigated in detail. Figure S2 shows the mole fraction distributions for 8-MQL hydrogenation at 120 - 170 °C over Ru/ Al_2O_3 . The standard hydrogenation conditions designed in this experiment were: 0.2 g Ru/ Al_2O_3 catalyst, 4 g 8-MQL, 40 ml dioxane and 7 MPa hydrogen pressure. Figure S3 shows mole fraction distributions for 8MQL hydrogenation under 4-9 MPa. The standard hydrogenation conditions were: 0.2 g Ru/ Al_2O_3 catalyst, 4 g 8-MQL, 40 ml dioxane, 160 °C.

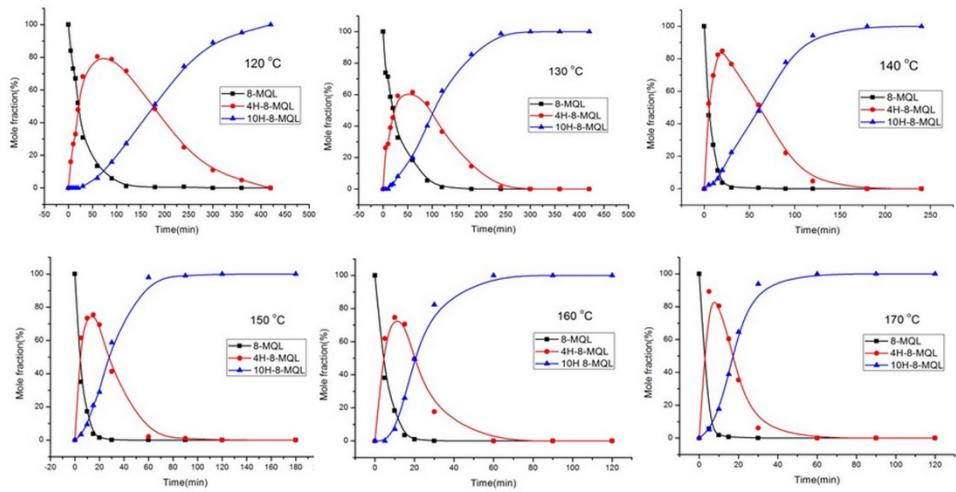


Figure S2. Mole fraction distributions for 8-MQL hydrogenation at 120 - 170 °C over Ru/Al₂O₃. General reaction conditions: 4 g 8-MQL, 0.4 g Ru/Al₂O₃, 40 ml dioxane as solvents, 7 MPa H₂.

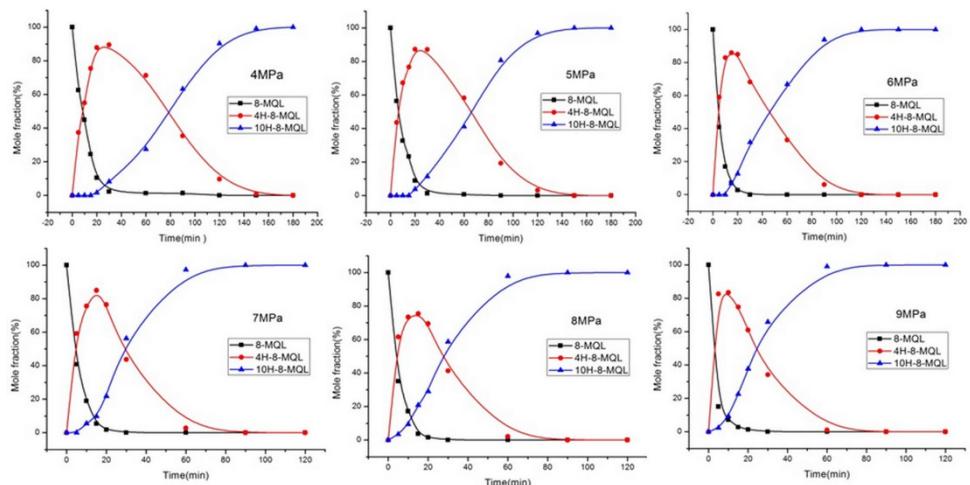


Figure S3. Mole fraction distributions for 8-MQL hydrogenation under 4 - 9 MPa over Ru/Al₂O₃. General reaction conditions: 4 g 8-MQL, 0.4 g Ru/Al₂O₃, 40 ml dioxane as solvents, 160 °C.