Promoting Formic Acid Oxidation Performance of Pd Nanoparticles Via Pt and Ru Atoms

Mediated Surface Engineering

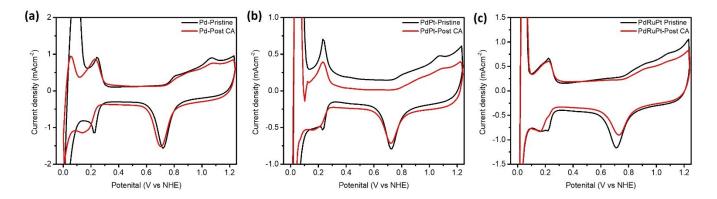
Authors: Dinesh Bhalothia,^a Tzu-Hsi Huang,^b Pai-Hung Chou,^b Kuan-Wen Wang,^{b*} and Tsan-

Yao Chen^{a,c*}

Affiliations:

^{a.} Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.

^{b.} Institute of Materials Science and Engineering, National Central University, Taoyuan City 32001, Taiwan.


^{c.} Hierarchical Green-Energy Materials (Hi-GEM) Research Centre, National Cheng Kung University, Tainan 70101, Taiwan

Corresponding Authors:

Tsan-Yao Chen Email: <u>chencaeser@gmail.com</u> Tel: +886-3-5715131 # 34271 FAX: +885-3-5720724

Kuan-Wen Wang Email: <u>kuanwen.wang@gmail.com</u> Tel: +886-3-4227151 # 34906

1. Electrochemical analysis results after CA analysis in formic acid oxidation reaction.

Figure S1. The CV sweeping curves of experimental samples after CA analysis for (a) Pd, (b) PdPt, and (c) PdRuPt recorded in $0.5 \text{ M H}_2\text{SO}_4$ saturated with N₂.

2. Mass activity on experimental NCs at 0.3 V and 0.5 V in forward scan.

The mass activities (MA) at 0.3 V and 0.5 V vs NHE in forward scan have been calculated by obtaining the FAOR current densities from LSV curves (**Figure 5b**) at corresponding potentials. The mass activity obtained when FAOR current density was normalized to the Pt + Pd loading.

For each catalyst, the current density:

Current density
$$\left(\frac{mA}{cm^2}\right) = \frac{mA}{0.19625}$$

Where 0.19625 cm^2 is the geometric surface area of the electrode.

Samples	MA _f -0.3 V (Pt&Pd)	MA _f .0.5 V (Pt&Pd)	
	(A/mg)	(A/mg)	
Pd	0.47	0.48	
PdPt	0.96	0.40	
PdRuPt	0.95	0.58	

Table S1. Mass activity on experimental NCs at 0.3 V and 0.5 V in forward scan.

3. Benchmark of Pd-based NCs in formic acid oxidation reaction.

The recent advancements in the design of Pd-based nanocatalysts towards formic acid oxidation reaction are summarized in **Table S2**. Accordingly, most bi- and multi-metallic Pd or PdPt NCs reported in previous studies demonstrate mass activities around 0.1-0.6 A/mg. Besides, the PdPt bimetallic NC in the present study possess an optimum mass activity of 1.0 A/mg with ultra-low content of Pt. In addition, we also demonstrate that incorporation of Ru-atoms enhances the CO-tolerance of PdPt NC during CA stability test.

In the following comparison table MA-0.3 V and MA-0.5 V are corresponding to current densities at 0.3 V and 0.5 V, respectively. Whereas MA-maximum is corresponding to the maximum current density in forward scan.

Catalysts	MA _f -0.3 V (Pt&Pd) (A/mg)	MA _{f-} 0.5 V (Pt&Pd) (A/mg)	MA _{f-} Maximum (Pt&Pd) (A/mg)	Electrolyte	Reference
Pd	0.47 ^a	0.48	0.6		
PdPt	0.96 ^a	0.40	1.0		This work
PdRuPt	0.95 ^a	0.58	0.9	_	
Pd ₃ Pt half-shells	_		0.318		
Pd ₃ Pt nanocages	-		0.220	-	Small 2018, 14, 1703940
Pd black	-		0.168	-	
PdPt NP/ILP– CNT	-		0.358	-	Ionics 2015, 21, 729-736
PdPt NP/CNT	-	N/A	0.197	- - - 0.5 M H₂SO₄+0.5 M HCOOH	Electrochimica Acta 2006, 51, 3477-3483
E-TEK PdPt/C	N/A		0.100		
PtAgCu@PtCu	-		0.314		
PtCu nanoflowers	-		0.241	+	Nano Energy 2015, 12, 824–832
Pd nanochain	-		0.309	-	Advanced Functional Materials 2017, 27
Porous PtAg@Pt	_		0.282	-	ACS applied materials & interfaces 2016, 8, 31076-31082
Pt ₃ Zn/C-300	0.0382 b	0.265		-	
PtZn/C-300	0.0362 ^b	0.249			
Pt ₃ Zn/C-700	0.0276 ^b	0.211			J. Mater. Chem. A, 2015, 3, 22129
PtZn/C-700	0.222 ^b	0.231			
Pt ₃ Zn10/C-700	0.0394 ^b	0.332			
Pd	0.35 b			0.1M HClO ₄ +0.5M HCOOH	Nano Lett. 2017, 17, 2727–2731
Pd nanosheets	0.3 ^b	 N/A	N/A	0.5 M H ₂ SO ₄ and 0.25 M HCOOH	Chem. Mater. 2018, 30, 3308
Pd@Au				0.1M HClO ₄ +3M HCOOH	Electrochem. Commun. 2007, 9, 1725– 1729
PdNi	0.22 b	-			
PdCu	0.38 ^b			$0.5 \text{ M H}_2\text{SO}_4 \text{ and } 0.5 \text{ M HCOOH}$	Appl. Catal. B 2016, 180, 758–765
Pd _{0.57} Ni _{0.13} Cu _{0.30}	0.48 ^b				

Table S2. Comparison of the formic acid oxidation reaction performance of Pd-based NCs.

Pd ₅₇ Ni ₄₃ nanowires	0.62 ^b			ACS Appl. Mater. Interfaces 2011, 3, 105–109
Pd@Ni _{1.6} B _{0.02}	0.21 ^b	-		Int. J. Hydrogen Energy 2018, 43, 3216– 3222
8 nm Pd _{0.5} Co _{0.5}	0.18 ^b	_	0.1 M HClO ₄ and 2 M HCOOH	Nano Lett. 2012, 12, 1102–1106
PdCu alloy multipod	0.15 ^b	-	0.1 M HClO ₄ and 1M HCOOH	n. J. Mater. Chem. A 2017, 5, 4421-4429
AuPd NPs		0.42	0.1M HClO ₄ +0.5M HCOOH	Angew. Chem. Int. Ed., 2011, 50, 8876 – 8880
Pd/CeO ₂ NTs	_	0.485	_	Electrocatalysis. 2015, 6, 255-262
NiPd NWs/RGO	- - N/A -	0.604	0.5 M H ₂ SO4+0.5 M HCOOH	J. Mater. Chem. A. 2015, 3, 14001–14006
AgPd NPs		0.287		Sci. Rep. 2015, 5, 3703
CuPd/CNTs		0.56		Electrochem. Commun. 2016, 69, 55–58
Pd ₆ Co nanocrystals on		0.43		Nanoscale. 2016, 8, 1905–1909
3D graphene Core/shell Au/Pd NPs	-	0.48		RSC Adv. 2016, 6, 24645–24650

^a Mass activities (MA) at 0.3 V and 0.5 V versus the normal hydrogen electrode (NHE). ^b Mass activities (MA) at 0.3 V versus the reversible hydrogen electrode (RHE)