Supporting information

Reasons for enhanced activity of doxorubicin on co-delivery with octa(3aminopropyl)silsesquioxane

Kinga Piorecka,*^a Jan Kurjata,^a Irena Bak-Sypien,^a Marek Cypryk,^a Urszula Steinke^a and Wlodzimierz A. Stanczyk^a

^a Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland

* Correspondence: kgradzin@cbmm.lodz.pl

Table of Content

Figure 1. FTIR spectra of DOX-POSS and DOX.

Figure 2. ESI MS spectrum of POSS after 24h incubation (37°C) in H₂O.

Figure 3. ESI MS spectrum of doxorubicin after 24h incubation (37°C) in H₂O.

Figure 4. ESI MS experimental spectrum of DOX-POSS complex ([6DOX-POSS+3H⁺-2Cl]³⁺) and simulated isotopic patterns.

Table 1. Experimental and theoretical masses of DOX:POSS complexes

Structure 1. Doxorubicin with labelled carbon atoms

Figure 5. Three possibilities of complex formation of two molecules of 1.

Figure 6. Cage and ladder-like tetramers of hydroxy amine hydrochloride optimized by PM3 method.

Figure 7. Ladder tetramer of doxorubicin hydrochloride (PM3 optimized).

Figure 8. B3LYP-GD3/6-31+G(d) optimized doxorubicin π -stacking dimer structures: (A) parallel, (B) antiparallel.

Figure 9. Doxorubicin hydrochloride, the most stable conformer (by ca 0.7 kcal/mol more stable than the second stable one) optimized with B3LYP/6-31+G(d). The hydrogen bonds are marked with dashed lines.

Figure 10. Conformation of the doxorubicin hydrochloride dimer linked through an NH³⁺Cl⁻ bridge and additionally bound by intramolecular parallel π - π stacking

Figure 11. Conformation of the doxorubicin hydrochloride dimer bound by antiparallel π - π stacking.

Figure 12. PM7 optimized structure of doxorubicine hydrochloride tetramer.

Figure 13. Z-potential of DOX:POSS (8:1) and POSS at 0h and 24h in PBS at 37°C.

Figure 14. Fluorescence emission spectra of complex DOX:POSS (8:1) in PBS with time at 37°C.

Fig. 1. FTIR spectra of DOX-POSS and DOX.

Fig. 2. ESI MS spectrum of POSS after 24h incubation (37°C) in H_2O .

Fig. 3. ESI MS spectrum of doxorubicin after 24h incubation (37°C) in H₂O.

Fig. 4. ESI MS experimental spectrum of DOX-POSS complex ([6DOX-POSS+3H+-2Cl]³⁺) and simulated isotopic patterns.

Table 1. Experimental and theoretical masses of DOX:POSS complexes

6 DOX:POSS	[6 DOX·HCl+POSS(HCl) ₈ -2HCl-3H ₂ O+H ⁺]	cal. 4527.11 Da	4527.29 Da
7 DOX:POSS	[7 DOX·HCl+POSS(HCl) ₈ -2HCl-3H ₂ O+H ⁺]	cal. 5106.08 Da	5106.45 Da
8 DOX:POSS	[8 DOX·HCl+POSS(HCl) ₈ -2HCl-3H ₂ O+H ⁺]	cal.5687.07 Da	5688.59 Da
9 DOX:POSS	[9 DOX·HCl+POSS(HCl) ₈ -2HCl-3H ₂ O+H ⁺]	cal. 6267.05 Da	6266.74 Da
10 DOX:POSS	[10 DOX·HCl+POSS(HCl) ₈ -2HCl-3H ₂ O+H ⁺]	cal. 6847.03 Da	6847.85 Da
11 DOX:POSS	[11DOX·HCl+POSS(HCl) ₈ -2HCl-3H ₂ O+H ⁺]	cal. 7426.01 Da	7426.05 Da

Structure 1. Doxorubicin with labelled carbon atoms

Fig. 5. Three possibilities of complex formation of two molecules of 1.

Fig. 6. Cage and ladder-like tetramers of hydroxy amine hydrochloride optimized by PM3 method.

Fig. 7. Ladder tetramer of doxorubicin hydrochloride (PM3 optimized).

A

Fig. 8. B3LYP-GD3/6-31+G(d) optimized doxorubicin π -stacking dimer structures: (A) paralel, (B) antiparallel.

Fig. 9. Doxorubicin hydrochloride, the most stable conformer (by ca 0.7 kcal/mol more stable than the second stable one) optimized with B3LYP/6-31+G(d). The hydrogen bonds are marked with dashed lines.

Fig. 10. Conformation of the doxorubicin hydrochloride dimer linked through an $NH^{3+}Cl^{-}$ bridge and additionally bound by intramolecular parallel π - π stacking

Fig. 11. Conformation of the doxorubicin hydrochloride dimer bound by antiparallel π - π stacking.

Fig. 12. PM7 optimized structure of doxorubicine hydrochloride tetramer.

Fig. 13. Z-potential of DOX:POSS (8:1) and POSS at 0h and 24h in PBS at 37°C.

Fig. 14. Fluorescence emission spectra of complex DOX:POSS (8:1) in PBS with time at 37°C.