Supporting Information

Efficient synthesis of highly dispersed ultrafine Pd nanoparticles on a porous

organic polymer for hydrogenation of CO₂ to formic acid

Xianzhao Shao,^{a,*} Xinyi Miao,^a Xiaohu Yu,^a Wei Wang,^a Xiaohui Ji,^a

^aShaanxi Key Laboratory of Catalysis, School of Chemistry and Environment

Science, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China

Scheme S1. Synthetic route for Pd/AP-POP catalyst.

Figure S1. FT-IR spectra of the AP-POP, 1,3,5-benzenetricarbonyl chloride (TMC) and 2,6-diaminopyridine (DAP). The absorption bands in between 1680 cm⁻¹ correspond to the amide C=O stretching frequency, also known as amide-I band. The band observed in the range 1528 cm⁻¹ corresponds to NH bending vibration, called amide-II band. No acid chloride (700 cm⁻¹) and amine bands corresponding to the starting compounds appear, demonstrating the complete transformation of starting material to polyamide POPs.

Figure S2. The ¹³C CP-MAS solid state NMR spectra of AP-POP. A signal at 164 ppm corresponds to the amide carbonyl. The overlapping signals between 109 and 150 ppm correspond to the aromatic carbons from phenyl and pyridyl moieties. * indicates peaks arising from spinning side bands.

Figure S3. SEM and TEM images of AP-POP.

Figure S4. The X-ray powder diffraction (XRPD) patterns of AP-POP.

Figure S5. N₂ adsorption/desorption isotherms of the AP-POP at 77 K (inset: pore size distribution curves of the AP-POP).

Figure S6. Thermogravimetric analysis (TGA) data of AP-POP. The initial weight loss [~8%] of AP-POP in TGA corresponds to the loss of trapped solvent as well as the moisture in the pores. The framework decomposition occurs above 300 °C with a gradual weight loss of 40%.

Figure S7. XRD patterns of Pd/AP-POP, Pd/AC and Pd/C₃N₄ catalysts.

Figure S8. TEM images of the Pd/AC and Pd/ C_3N_4 catalysts with the Pd NP size distribution.

Figure S9. The high-resolution spectrum of O 1s of AP-POP and Pd/AP-POP.

Figure S10. ¹H NMR spectra of a reaction mixture after CO₂ reduction (with and without Et₃N).

Figure S11. STEM images of the used Pd/AP-POP catalyst and Pd NP size distribution.

Figure S12. Carbon dioxide adsorption isotherms collected at 273 K for AP-POP.

Materials		Elemental and	$S_{\rm BET}{}^{\rm b}$	Pore size ^c		
-	С	Ν	Н	Pd	(m^2g^{-1})	(nm)
AP-POP	57.96	17.75	4.22	none	43	7.8
Pd/AP-POP	56.85	16.32	3.97	3.5	16	10.7
C_3N_4	38.59	58.83	1.02	none	99	4.0
Pd/C ₃ N ₄	37.2	57.14	0.94	3.3	21	7.6
AC	76.5	0.65	1.9	none	631	2.8
Pd/AC	75.13	0.57	1.52	3.2	517	2.9

 Table S1. Chemical composition and textural properties of different materials.

[a] Elemental analysis of C, H and N was carried out by using a PerkinElmer 2400 instrument. Pd content was quantified by ICP-OES. [b] Brunauer–Emmett–Teller (BET) method. [c] The average pore sizes calculated from the adsorption branch by using Barrett–Joyner–Halenda (BJH) method.

Catalysts	T [ºC]	Time [h]	Pressure(H ₂ /CO ₂)	TON	TOF	Ref.
Pd/AP-POP	80	12	3.0/3.0 [MPa]	128	10.7	This work
PdAg/amine-RF10	40	24	2.0/2.0 [MPa]	63	2.6	1
PdNi/CNT	40	16	25/25 [bar]	3	0.2	2
0.6Pd/C ₃ N ₄	40	16	25/25 [bar]	24	1.5	3
2Pd/ECN	40	16	2.5/2.5 [MPa]	35	2.2	4
RuCl ₂ (PTA) ₄	60	16	25/25 [bar]	158	9.9	5

Table S2. Comparison of the activity in the transformation of CO_2 to FA in the pure water condition.

Reference

 [1] S. Masuda, K. Mori, Y. Kuwahara and H.Yamashita. J. Mater. Chem. A, 2019, 7, 16356–16363.

[2] L. T. M. Nguyen, H. Park, M. Banu, J. Y. Kim, D. H. Youn, G. Magesh, W. Y.

Kim, and J. S. Lee, RSC Adv., 2015, 5, 105560-105566.

[3] H. Park, J. H. Lee, E. H. Kim, K. Y. Kim, Y. H. Choi, D. H. Youn and J. S. Lee,

Chem. Commun., 2016, 52, 14302–14305.

[4] C. Mondelli, B. Purtolas, M. Ackermann, Z. Chen and J. P. Ramírez, *ChemSusChem*, 2018, 11, 2859–2869.

[5] S. Moret, P. J. Dyson and G. Laurenczy, Nat. Commun., 2014, 5, 4017.