Supplementary Information

Mesoporous Cu-Cu₂O@TiO₂ Heterojunction Photocatalysts Derived

from Metal-Organic Frameworks

Wenling Zhao,^a Chengcheng Liu,*^a

^a Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China

Fig. S1 XRD patterns of NOTT-100(Cu) (blue) and NOTT-100(Cu)@Ti(IV) (black).

Fig. S2 XRD patterns of the samples with different calcination temperatures and time. 350°C for 2h (blue), 550°C for 2h (black), 550°C for 4h (pink) and 600°C for 4h (olive).

Fig. S3 EDS mapping of Cu-Cu₂O@TiO₂.

Fig. S4 N_2 adsorption-desorption isotherm (a) and BJH desorption pore distribution (b) of Cu-Cu₂O@TiO₂.

Fig. S5 Photodegradation of MB in the presence of $Cu-Cu_2O@TiO_2$ nanocomposite, commercial TiO_2 (anatase), NOTT-100(Cu), NOTT-100(Cu)@Ti(IV) and Cu₂O under the visible light irradiation.

Fig. S6 Photodegradation of MB by Cu-Cu₂O@TiO₂ photocatalysts under visible light illumination for three runs.

Fig. S7 (a) UV–Vis absorption spectra for MO solution in the presence of Cu-Cu₂O@TiO₂ nanocomposite; (b) Photodegradation of MO in the presence of Cu-Cu₂O@TiO₂ nanocomposite, TiO₂ (anatase) and NOTT-100(Cu) under the visible light irradiation

Fig. S8 Photodegradation of MB, MO and 4-NP using Cu-Cu₂O@TiO₂ nanocomposite under the visible light irradiation for 3 hours.

Dye	Catalyst	Decay rate (b) / min ⁻¹
MB	Cu-Cu ₂ O@TiO ₂	0.0166
МО	Cu-Cu ₂ O@TiO ₂	0.0120
4-NP	Cu-Cu ₂ O@TiO ₂	0.0062
MB	TiO ₂ (anatase)	0.0007
MB	NOTT-100(Cu)	0.0006
MB	Cu ₂ O calcined from NOTT-100(Cu)	0.0023

Table. S1 Decay rate values of dyes with $Cu-Cu_2O@TiO_2$, TiO_2 (anatase), and Cu_2O calcined from NOTT-100(Cu) under illumination with visible light

The Langmuir–Hinshelwood kinetics model is used to determine the kinetics of the photocatalytic degradation rate, and the equation is as follows:

$$\ln \frac{C_0}{C} = bt + constant \tag{1}$$

where C_0 is the original concentration of model pollutants before the light irradiation, and C is the concentration of model pollutants at different irradiation time. The apparent first-order rate constant b (min⁻¹) can be determined by the corresponding slope of $ln(C_0/C)$ and irradiation time t (min).