Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

### Electrophilic Alkylation of Arenes with 5-Bromopyrimidine en route to 4-Aryl-5-alkynylpyrimidines

Stanislav S. Shcherbakov,\*<sup>*a*</sup> Artyom Yu. Magometov,<sup>*a*</sup> Viktoriia Yu. Shcherbakova,<sup>*a*</sup> Alexander V. Aksenov,<sup>*a*</sup> Dmitriy A. Domenyuk,<sup>*b*</sup> Vladimir A. Zelensky,<sup>*b*</sup> and Michael Rubin\*<sup>*ac*</sup>

a. Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation. E-mail: alexaks05@rambler.ru

b. Department of General Practice Dentistry and Child Dentistry, Stavropol State. Medical University, 310 Mira Street, Stavropol 355017, Russian Federation.

c. Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045-7582, USA. Tel: +1-785-864- 5071, E-mail: mrubin@ku.edu

# **Supporting Information**

#### **Table of Contents**

| Spectral Data              | 2  |
|----------------------------|----|
| X-Ray Crystallography Data | 44 |

## Spectral Data









































S21









































S41



![](_page_42_Figure_0.jpeg)

# X-Ray Crystallography Data

![](_page_43_Figure_1.jpeg)

![](_page_43_Picture_2.jpeg)

**Figure S1**. ORTEP drawing of compound **20a** (left, CCDC 1983237) showing 50% thermal ellipsoids. Microphotography of the cryright.

Table S1. Crystal data and structure refinement for 20a.

| Identification code                         | ANNA_STAS99604_5                                       |
|---------------------------------------------|--------------------------------------------------------|
| Empirical formula                           | $C_{10}H_7BrN_2O$                                      |
| Formula weight                              | 251.09                                                 |
| Temperature/K                               | 100.0(2)                                               |
| Crystal system                              | triclinic                                              |
| Space group                                 | P-1                                                    |
| a/Å                                         | 9.0376(2)                                              |
| b/Å                                         | 9.5049(2)                                              |
| c/Å                                         | 11.5608(2)                                             |
| $\alpha/^{\circ}$                           | 77.439(2)                                              |
| β/°                                         | 76.725(2)                                              |
| $\gamma/^{\circ}$                           | 87.542(2)                                              |
| Volume/Å <sup>3</sup>                       | 943.39(3)                                              |
| Ζ                                           | 4                                                      |
| $\rho_{calc}g/cm^3$                         | 1.768                                                  |
| μ/mm <sup>-1</sup>                          | 5.662                                                  |
| F(000)                                      | 496.0                                                  |
| Crystal size/mm <sup>3</sup>                | $0.426 \times 0.227 \times 0.214$                      |
| Radiation                                   | $CuK\alpha$ ( $\lambda = 1.54184$ )                    |
| $2\Theta$ range for data collection/°       | 8.044 to 152.36                                        |
| Index ranges                                | $-11 \le h \le 10, -11 \le k \le 11, -14 \le l \le 14$ |
| Reflections collected                       | 19731                                                  |
| Independent reflections                     | $3943 [R_{int} = 0.0426, R_{sigma} = 0.0228]$          |
| Data/restraints/parameters                  | 3943/0/262                                             |
| Goodness-of-fit on F <sup>2</sup>           | 1.084                                                  |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.0295, wR_2 = 0.0762$                          |
| Final R indexes [all data]                  | $R_1 = 0.0311, wR_2 = 0.0780$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.69/-0.65                                             |

| Atom | x         | у          | Z          |
|------|-----------|------------|------------|
| Br2  | 5699.7(2) | 568.0(2)   | 1734.0(2)  |
| Br1  | 6859.3(3) | 1631.2(3)  | 4926.8(2)  |
| 01   | 9701(2)   | 2857.1(18) | 9509.9(16) |
| 02   | 8735(2)   | 5533.8(19) | 3597.9(17) |
| N4   | 3365(2)   | 4423(2)    | 1226.5(17) |
| N2   | 9046(2)   | -1891(2)   | 6621.5(18) |
| N3   | 2314(2)   | 2781(2)    | 332.9(17)  |
| N1   | 7982(2)   | -2583(2)   | 5122.5(18) |
| C17  | 8148(3)   | 4166(2)    | 2302(2)    |
| C18  | 7670(3)   | 5082(2)    | 3111(2)    |
| C16  | 7108(2)   | 3626(2)    | 1798.9(19) |
| C5   | 8791(2)   | 399(2)     | 7179(2)    |
| C12  | 3356(3)   | 1817(2)    | 629(2)     |
| C3   | 8462(2)   | -552(2)    | 6411.3(19) |
| C14  | 4458(2)   | 3480(2)    | 1499.2(19) |
| C11  | 2357(2)   | 4031(2)    | 683(2)     |
| C8   | 9443(2)   | 2033(2)    | 8758.4(19) |
| C15  | 5571(2)   | 3993(2)    | 2071.7(19) |
| C13  | 4430(2)   | 2113(2)    | 1228(2)    |
| C4   | 7619(3)   | -207(2)    | 5502(2)    |
| C6   | 10063(2)  | 89(2)      | 7696(2)    |
| C19  | 6140(3)   | 5469(2)    | 3387(2)    |
| C7   | 10390(2)  | 902(2)     | 8469(2)    |
| C1   | 7402(3)   | -1265(3)   | 4900(2)    |
| C10  | 7842(2)   | 1530(2)    | 7493(2)    |
| C20  | 5105(3)   | 4941(2)    | 2858(2)    |
| C2   | 8807(3)   | -2819(3)   | 5974(2)    |
| C9   | 8154(3)   | 2329(2)    | 8278(2)    |

**Table S2**. Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **20a**.  $U_{eq}$  is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | Un        | U22       | U33       | U23       | U13        | U12      |
|------|-----------|-----------|-----------|-----------|------------|----------|
| Br2  | 17.32(14) | 12.65(14) | 23.15(15) | -8.12(9)  | -9.44(10)  | 5.77(9)  |
| Br1  | 28.10(16) | 18.58(15) | 18.80(15) | -1.47(10) | -12.72(10) | 4.85(10) |
| 01   | 15.9(8)   | 19.6(8)   | 24.3(9)   | -14.9(7)  | -11.4(7)   | 6.4(6)   |
| O2   | 19.5(8)   | 21.1(9)   | 26.2(9)   | -14.8(7)  | -12.5(7)   | 2.8(7)   |
| N4   | 14.3(9)   | 12.3(9)   | 15.7(9)   | -5.1(7)   | -5.9(7)    | 3.0(7)   |
| N2   | 17.1(9)   | 14.9(9)   | 17.5(9)   | -7.6(7)   | -7.1(7)    | 2.5(7)   |
| N3   | 15.9(9)   | 15.4(9)   | 15.6(9)   | -5.7(7)   | -7.7(7)    | 2.4(7)   |
| N1   | 17.1(9)   | 20.8(10)  | 18.8(9)   | -11.5(8)  | -6.1(8)    | 0.5(8)   |
| C17  | 14.0(10)  | 14.7(10)  | 15.4(10)  | -4.5(8)   | -5.3(8)    | 2.0(8)   |
| C18  | 16.4(10)  | 13.3(10)  | 15.1(10)  | -3.8(8)   | -8.1(8)    | -0.6(8)  |
| C16  | 14.5(10)  | 11.9(10)  | 11.6(9)   | -4.6(8)   | -2.4(8)    | 1.2(8)   |
| C5   | 13.4(10)  | 12.6(10)  | 13.7(10)  | -5.0(8)   | -5.1(8)    | 0.4(8)   |
| C12  | 16.7(10)  | 12.9(10)  | 13.8(10)  | -6.4(8)   | -4.6(8)    | 2.1(8)   |
| C3   | 11.3(9)   | 15.1(10)  | 12.0(10)  | -4.4(8)   | -3.2(8)    | 1.0(8)   |
| C14  | 13.3(10)  | 12.1(10)  | 11.1(9)   | -4.4(8)   | -3.7(8)    | 2.5(8)   |
| C11  | 13.9(10)  | 12.9(10)  | 14.8(10)  | -3.4(8)   | -5.3(8)    | 2.9(8)   |
| C8   | 14.1(10)  | 12.7(10)  | 13.2(10)  | -5.4(8)   | -4.1(8)    | -0.6(8)  |
| C15  | 12.1(10)  | 11.9(10)  | 12.4(9)   | -3.2(8)   | -3.6(8)    | 0.2(8)   |
| C13  | 13.2(10)  | 12.3(10)  | 13.8(10)  | -5.5(8)   | -4.2(8)    | 4.1(8)   |
| C4   | 14.7(10)  | 15.4(10)  | 14.2(10)  | -4.0(8)   | -5.6(8)    | 1.8(8)   |
| C6   | 12.9(10)  | 12.6(10)  | 14.8(10)  | -4.7(8)   | -4.3(8)    | 3.5(8)   |
| C19  | 20.6(11)  | 16.6(11)  | 17.7(11)  | -11.3(9)  | -6.5(9)    | 3.3(9)   |
| C7   | 13.3(10)  | 16.9(11)  | 16.4(10)  | -5.9(8)   | -7.9(8)    | 3.7(8)   |
| C1   | 15.9(10)  | 23.8(12)  | 13.8(10)  | -6.1(9)   | -5.3(8)    | -0.9(9)  |
| C10  | 13.6(10)  | 13.2(10)  | 20.1(11)  | -4.2(8)   | -8.9(8)    | 2.9(8)   |
| C20  | 13.6(10)  | 16.4(11)  | 18.5(11)  | -8.0(9)   | -5.5(8)    | 2.9(8)   |
| C2   | 19.4(11)  | 16.4(11)  | 20.9(11)  | -9.4(9)   | -7.0(9)    | 3.7(9)   |
| C9   | 14.5(10)  | 12.6(10)  | 20.5(11)  | -7.0(8)   | -6.7(9)    | 3.3(8)   |

**Table S3**. Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **20a**. The Anisotropic displacement factor exponent takes the form:  $2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$ .

### Table S4. Bond Lengths for 20a

| Atom | Atom | Length/Å | Atom | Atom | Length/Å |
|------|------|----------|------|------|----------|
| Br2  | C13  | 1.899(2) | C16  | C15  | 1.398(3) |
| Br1  | C4   | 1.889(2) | C5   | C3   | 1.479(3) |
| O1   | C8   | 1.352(3) | C5   | C6   | 1.406(3) |
| O2   | C18  | 1.348(3) | C5   | C10  | 1.403(3) |
| N4   | C14  | 1.350(3) | C12  | C13  | 1.385(3) |
| N4   | C11  | 1.325(3) | C3   | C4   | 1.410(3) |
| N2   | C3   | 1.351(3) | C14  | C15  | 1.475(3) |
| N2   | C2   | 1.327(3) | C14  | C13  | 1.403(3) |
| N3   | C12  | 1.335(3) | C8   | C7   | 1.395(3) |
| N3   | C11  | 1.341(3) | C8   | C9   | 1.395(3) |
| N1   | C1   | 1.332(3) | C15  | C20  | 1.402(3) |
| N1   | C2   | 1.343(3) | C4   | C1   | 1.385(3) |
| C17  | C18  | 1.399(3) | C6   | C7   | 1.387(3) |
| C17  | C16  | 1.381(3) | C19  | C20  | 1.392(3) |
| C18  | C19  | 1.397(3) | C10  | С9   | 1.385(3) |

### Table S5. Hydrogen Bonds for 20a

| D  | Н  | А   | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
|----|----|-----|----------|----------|----------|---------|
| 01 | H1 | N31 | 0.75(4)  | 2.03(4)  | 2.734(3) | 159(4)  |
| O2 | H2 | N12 | 0.74(4)  | 2.02(4)  | 2.737(3) | 166(4)  |

### Table S6. Bond Angles for 20a

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| C11  | N4   | C14  | 118.59(19) | 01   | C8   | C7   | 122.8(2)   |
| C2   | N2   | C3   | 119.2(2)   | O1   | C8   | C9   | 117.6(2)   |
| C12  | N3   | C11  | 115.44(19) | С9   | C8   | C7   | 119.6(2)   |
| C1   | N1   | C2   | 115.2(2)   | C16  | C15  | C14  | 121.81(19) |
| C16  | C17  | C18  | 120.1(2)   | C16  | C15  | C20  | 118.5(2)   |
| O2   | C18  | C17  | 117.0(2)   | C20  | C15  | C14  | 119.58(19) |
| O2   | C18  | C19  | 123.4(2)   | C12  | C13  | Br2  | 116.76(16) |
| C19  | C18  | C17  | 119.6(2)   | C12  | C13  | C14  | 119.3(2)   |
| C17  | C16  | C15  | 121.1(2)   | C14  | C13  | Br2  | 123.80(16) |
| C6   | C5   | C3   | 118.22(19) | C3   | C4   | Br1  | 125.92(17) |
| C10  | C5   | C3   | 123.59(19) | C1   | C4   | Br1  | 115.44(17) |
| C10  | C5   | C6   | 118.0(2)   | C1   | C4   | C3   | 118.5(2)   |
| N3   | C12  | C13  | 121.8(2)   | C7   | C6   | C5   | 120.9(2)   |
| N2   | C3   | C5   | 115.09(19) | C20  | C19  | C18  | 119.9(2)   |
| N2   | C3   | C4   | 117.8(2)   | C6   | C7   | C8   | 120.2(2)   |
| C4   | C3   | C5   | 127.1(2)   | N1   | C1   | C4   | 123.0(2)   |
| N4   | C14  | C15  | 116.05(19) | С9   | C10  | C5   | 121.2(2)   |
| N4   | C14  | C13  | 117.9(2)   | C19  | C20  | C15  | 120.7(2)   |
| C13  | C14  | C15  | 126.08(19) | N2   | C2   | N1   | 126.3(2)   |
| N4   | C11  | N3   | 126.8(2)   | C10  | С9   | C8   | 120.1(2)   |

| Atom | x         | У        | z        | U(eq)  |
|------|-----------|----------|----------|--------|
| H17  | 9168.24   | 3919.87  | 2102.57  | 17     |
| H16  | 7435.11   | 3008.82  | 1269.59  | 15     |
| H12  | 3361.83   | 920.73   | 427.42   | 17     |
| H11  | 1600.66   | 4692.86  | 528.34   | 16     |
| H6   | 10694     | -670.49  | 7517.54  | 16     |
| H19  | 5814.6    | 6078.53  | 3923.6   | 20     |
| H7   | 11243.32  | 691.53   | 8796.24  | 17     |
| H1A  | 6825.48   | -1045.76 | 4314.34  | 21     |
| H10  | 6989.12   | 1746.29  | 7166.98  | 18     |
| H20  | 4093.46   | 5220.57  | 3028.94  | 18     |
| H2A  | 9255.35   | -3719.39 | 6124.49  | 21     |
| H9   | 7502.85   | 3064.09  | 8486.13  | 18     |
| H1   | 10470(40) | 2690(40) | 9630(30) | 33(10) |
| H2   | 8390(40)  | 6030(40) | 4000(40) | 34(10) |

**Table S7**. Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and IsotropicDisplacement Parameters (Ų×10³) for **20a** 

#### Experimental

Single crystals of  $C_{10}H_7BrN_2O$  (**20a**) were re-crystallized from benzene/hexane mixture. A suitable crystal was selected and mounted on the glass stick with acrylic glue. The diffraction spectrum was registered on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 100.0(2) K during data collection. Using Olex2,<sup>S1</sup> the structure was solved with the ShelXT <sup>S2</sup> structure solution program using Intrinsic Phasing and refined with the ShelXL <sup>S3</sup> refinement package using Least Squares minimization.

#### Crystal structure determination of 20a

**Crystal Data** for C<sub>10</sub>H<sub>7</sub>BrN<sub>2</sub>O (M=251.09 g/mol): triclinic, space group P-1 (no. 2), a = 9.0376(2) Å, b = 9.5049(2) Å, c = 11.5608(2) Å,  $a = 77.439(2)^\circ$ ,  $\beta = 76.725(2)^\circ$ ,  $\gamma = 87.542(2)^\circ$ , V = 943.39(3) Å<sup>3</sup>, Z = 4, T = 100.0(2) K,  $\mu$ (CuK $\alpha$ ) = 5.662 mm<sup>-1</sup>, *Dcalc* = 1.768 g/cm<sup>3</sup>, 19731 reflections measured ( $8.044^\circ \le 2\Theta \le 152.36^\circ$ ), 3943 unique ( $R_{int} = 0.0426$ ,  $R_{sigma} = 0.0228$ ) which were used in all calculations. The final  $R_1$  was 0.0295 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.0780 (all data).

#### **Refinement model description**

Number of restraints - 0, number of constraints - unknown.

Details:
1. Fixed Uiso
At 1.2 times of:
 All C(H) groups
2.a Aromatic/amide H refined with riding coordinates:
 C17(H17), C16(H16), C12(H12), C11(H11), C6(H6), C19(H19), C7(H7), C1(H1A),
 C10(H10), C20(H20), C2(H2A), C9(H9)

<sup>(</sup>S1) Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.

<sup>(</sup>S2) Sheldrick, G.M. Acta Cryst. 2015, A71, 3-8.

<sup>(</sup>S3) Sheldrick, G.M. Acta Cryst. 2015, C71, 3-8.