Supplementary Information

Facile control of surfactant lamellar phase transition

and adsorption behavior.

Rui A. Gonçalves,^a Polina Naidjonoka,^b Tommy Nylander,^b Maria G. Miguel,^c Björn Lindman,^{a,b} and Yeng Ming Lam ^{*a}

^a School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore

^b Division of Physical Chemistry, Department of Chemistry, Centre for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden

^c Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal

*Corresponding Author, e-mail addresses: YMLam@ntu.edu.sg

Fig. SI-1 Stacked SAXS/WAXS profiles for the original mixtures of 35 wt. % DODAC-water-acetic acid (AA). (i) SAXS/WAXS of 5 wt. % AA in the L_{β} (gel) phase; (ii) SAXS/WAXS of 5 wt. % AA in the L_{α} (liquid-crystalline) phase; (iii) SAXS/WAXS of 12.5 wt. % AA in the L_{β} phase; (iv) SAXS/WAXS of 12.5 wt. % AA in the L_{α} phase; (iv) SAXS/WAXS of 12.5 wt. % AA in the L_{α} phase. The Bragg reflections on SAXS reveal the lamellar peak ratio of 1: 2: 3... On the WAXS regime the L_{β} phase peak at *q* = 1.50 Å⁻¹, and the L_{α} phase peak broadening at ca. 1.42 Å⁻¹ are determined.

Fig. SI-2 Stacked SAXS/WAXS profiles for the original mixtures of 35 wt. % DODAC-waterpropionic acid (PA). (i) SAXS/WAXS of 5 wt. % PA in the L_{β} (gel) phase; (ii) SAXS/WAXS of 5 wt. % PA in the L_{α} (liquid-crystalline) phase; (iii) SAXS/WAXS of 12.5 wt. % PA in the L_{β} phase; (iv) SAXS/WAXS of 12.5 wt. % PA in the L_{α} phase. The Bragg reflections on SAXS reveal the lamellar peak ratio of 1: 2: 3... On the WAXS regime the L_{β} phase peak at *q* = 1.49 Å⁻¹, and the L_{α} phase peak broadening at ca. 1.38 Å⁻¹ are determined.

Fig. SI-3 Stacked SAXS/WAXS profiles for the original mixtures of 35 wt. % DODAC-water-benzyl alcohol (BenOH). (i) SAXS/WAXS of 5 wt. % BenOH in the L_{β} (gel) phase; (ii) SAXS/WAXS of 5 wt. % BenOH in the L_{α} (liquid-crystalline) phase; (iii) SAXS/WAXS of 12.5 wt. % BenOH in the L_{β} phase; (iv) SAXS/WAXS of 12.5 wt. % BenOH (unidentified phase). The Bragg reflections on SAXS reveal the lamellar peak ratio of 1: 2: 3... On the WAXS regime the L_{β} phase peak at *q* = 1.49 Å⁻¹, and the L_{α} phase peak broadening at ca. 1.40 Å⁻¹ are determined.

Fig. SI-4 Stacked SAXS/WAXS profiles for the original mixtures of 35 wt. % DODAC-waterphenoxyethanol (PhEtOH). (i) SAXS/WAXS of 5 wt. % PhEtOH in the L_{β} (gel) phase; (ii) SAXS/WAXS of 5 wt. % PhEtOH in the L_{α} (liquid-crystalline) phase; (iii) SAXS/WAXS of 12.5 wt. % PhEtOH in the L_{β} phase; (iv) SAXS/WAXS of 12.5 wt. % PhEtOH in the L_{α} (liquid-crystalline) phase. The Bragg reflections on SAXS reveal the lamellar peak ratio of 1: 2: 3... On the WAXS regime the L_{β} phase peak at *q* = 1.52 Å⁻¹, and the L_{α} phase peak broadening at ca. 1.38 Å⁻¹ are determined.

Fig. SI-5 Scattering profiles of diluted mixtures at 20 °C (below T_m) and 55 °C (above T_m). (a) SAXS of 5 wt. % acetic acid in DODAC-water, (b) SAXS of 12.5 wt. % acetic acid in DODAC-water, (c) WAXS of 5 wt. % acetic acid in DODAC-water, and (d) WAXS of 12.5 wt. % acetic acid in DODAC-water.

Fig. SI-6 Scattering profiles of diluted mixtures at 20 °C (below T_m) and 55 °C (above T_m). (a) SAXS of 5 wt. % propionic acid in DODAC-water, (b) SAXS of 12.5 wt. % propionic acid in DODAC-water, (c) WAXS of 5 wt. % propionic acid in DODAC-water, and (d) WAXS of 12.5 wt. % propionic acid in DODAC-water.

Fig. SI-7 Scattering profiles of diluted mixtures at 20 °C (below T_m) and 55 °C (above T_m). (a) SAXS of 5 wt. % butyric acid in DODAC-water, (b) SAXS of 12.5 wt. % butyric acid in DODAC-water, (c) WAXS of 5 wt. % butyric acid in DODAC-water, and (d) WAXS of 12.5 wt. % butyric acid in DODAC-water.

Fig. SI-8 Scattering profiles of diluted mixtures at 20 °C (below T_m) and 55 °C (above T_m). (a) SAXS of 5 wt. % benzyl alcohol in DODAC-water, (b) SAXS of 12.5 wt. % benzyl alcohol in DODAC-water, (c) WAXS of 5 wt. % benzyl alcohol in DODAC-water, and (d) WAXS of 12.5 wt. % benzyl alcohol in DODAC-water.

Fig. SI-9 Scattering profiles of diluted mixtures at 20 °C (below T_m) and 55 °C (above T_m). (a) SAXS of 5 wt. % phenoxyethanol in DODAC-water, (b) SAXS of 12.5 wt. % phenoxyethanol in DODAC-water, (c) WAXS of 5 wt. % phenoxyethanol in DODAC-water, and (d) WAXS of 12.5 wt. % phenoxyethanol in DODAC-water.

Table SI-1 Values of the adsorbed amount, Γ , average layer thickness, d, and area per surfactant molecule, a, of the diluted DODAC-water-12.5 wt. % butyric acid samples with increasing concentration of the solution in the ellipsometry cuvette. Concentration increases from C1 to C4.

Diluted sample	Adsorbed amount, Γ (μmol/m ²)	Average thickness, <i>d</i> (Å)	Area per molecule, <i>a</i> (Ų)
C1 – 3.6 mM	4.37 ± 0.02	80 ± 3	38
C2 – 6.0 mM	4.55 ± 0.02	72 ± 3	36
C3 – 7.2 mM	4.65 ± 0.01	63 ± 2	36
C4 – 12.0 mM	5.06 ± 0.02	56 ±2	33