Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

One-Pot Copper-Catalyzed Three-Component Reaction: a Modular Approach to Functionalized 2-Quinolones

Ah Reum Kim and Hee Nam Lim*

Table of Contents

1. Preparation of starting materials	S2
2. Optimization table for the Cu-salts	S2
3. Optimization tables for the ketone substrate	
3. ¹ H-NMR, ¹³ C-NMR and ¹⁹ F-NMR	S4-51

1. Preparation of starting materials

2-Bromobenzaldehydes **1a-b**, **1e-k**, **1o**, **1p** and **1r** are purchased from Alfa-Aesar (AA) and Tokyo Chemical Industry (TCI) co., Ltd and $1c^{1a}-d^{1b}$, $1l^{2a}-m^{2b}$ and $1q^3$ are prepared by the known methods. The ketones **1s** and **1u** are purchased from the AA and the TCI, respectively. The ketones **1t**, ^{4a} $1v^{4b}$ and $1w^{4c}$ are prepared. Sodium sulfinates **2b** and **2f** are available from the TCI, and **2d**, **2e** and **2g-i** are purchased from the Fluorochem. The sodium sulfinates **2c** and **2j-n** are prepared by the known methods.⁵

2. Optimization table for the Cu-salts

СНС		Copper catalyst 2-picolinic acid (20 mol%) K_2CO_3 (200 mol%) DMF, 110 °C, [M] = 0.3M	H SO ₂ Ph
Br	H ₂ N Na O S Ph	2 days	
1a (0.5 mmol)	2 3a (0.75 mmol) (0.75 mmol)		4aa H
Entry	Copper catalyst		Yield ^a
1	Cu powder (60-80nm)		55%
2	Cu(dendritic)		42%
3	Cu(25nm)		40%
4	Cul		51%
5	CuBr		42%
6	CuCl		40%
7	Cu(OAc) ₂		46%
8	Cu(OTf) ₂		32%
9	CuO ₂		12%

 $^{\mathrm{a}}\textsc{determined}$ by 1H NMR using 1,3,5-trimethoxybenzene as the internal standard

³ (a) S. Song, X. Sun, X. Li, Y. Yuan and N. Jiao, *Org. Lett.*, 2015, **17**, 2886; (b) E. Baiceanu, K.-A. Nguyen, L. Gonzalez-Lobato, R. Nasr, H. Baubichon-Cortay, F. Loghin, M. L. Borgne, L. Chow, A. Boumendjel, M. Peuchmaur and P. Falson, *Eur. J. Med. Chem.*, 2016, **122**, 408.

⁴ (a) B. N. Hemric, K. Shen and Q. Wang, *J. Am. Chem. Soc.*, 2016, **138**, 5813; (b) T. M. E. Dine, W. Erb, Y. Berhault, J. Rouden and J. Blanchet, *J. Org. Chem.*, 2015, **80**, 4532; (c) S. L. MacNeil, M. Gray, D. G. Gusev, L. E. Briggs and V. Snieckus, *J. Org. Chem.*, 2008, **73**, 9710.

⁵ (a) A. U. Meyer, K. Straková, T. Slanina and B. König, *Chem. Eur. J.*, 2016, **22**, 8694; (b) T. Markovic, B. N. Rocke, D. C. Blakemore, V. Mascitti and M. C. Willis, *Org. Lett.*, 2017, **19**, 6033; (c) G. Bogonda, D. V. Patil, H. Y. Kim and K. Oh, *Org. Lett.*, 2019, **21**, 3774.

¹ (a) L. R. Marcin, A. C. Good, Y.-J. Wu, D. S. Zuev, R. E. Olson and N. Wang (Bristol-Myers Squibb Co., USA), Preparation of amino acid-containing macrocycles as inhibitors of β -amyloid production, *US Patent* 20080194535, August 14, 2008; (b) B. H. Ahn, I. Y. Lee and H. N. Lim, *Org. Biomol. Chem.*, 2018, **16**, 7851.

² (a) N. M. R. McNeil, D. J. Press, D. M. Mayder, P. Garnica, L. M. Doyle and T. G. Back, *J. Org. Chem.*, 2016, 81, 7884; (b) J. Lin, W. Zhang, N. Jiang, Z. Niu, K. Bao, L. Zhang, D. Liu, C. Pan and X. Yao, *J. Nat. Prod.*, 2008, 71, 1938.

3. Optimization tables for the ketone substrate

Table S1. Additive effect

desiccant (1equiv)	Yield ^a
None	4%
MgSO ₄	4%
Na ₂ SO ₄	trace
Al ₂ O ₃	5%
NaCl	5%
CaCl ₂	2%
silica gel (100wt%)	trace
molecular sieve 4Å (100 wt%)	9%
CaO	trace
Ca(OH) ₂	20%

Table S2. Determination of $Ca(OH)_2$ equivalent

equivalent of Ca(OH) ₂	Yield ^a
1.0 equiv (0.50 mmol)	20%
1.5 equiv (0.75 mmol)	29%
2.0 equiv (1.00 mmol)	56%
2.5 equiv (1.25 mmol)	59%
3.0 equiv (1.50 mmol)	58%

^adetermined by 1H NMR using 1,3,5-trimethoxybenzene as the internal standard

3. ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR

