Biomass-derived Fe-NC hybrid for hydrogenation with formic acid: Control of

Fe-based nanoparticles distribution

Lu Liu ^{a†}, Bowei Wang ^{abc†}, Ruixiao Gao ^a, Dan Zhang ^a, Wensheng Xu ^a, Ligong

Chen abc*, Xilong Yan abc, Yang Li abc*

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.

^c Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China.

* Corresponding authors. E-mail: lgchen@tju.edu.cn; liyang777@tju.edu.cn

[†] These authors contributed equally to this work.

Fig. S1. SEM images of (a) Fe-NC-FeSO₄, (b) Fe-NC-FeCl₂, (c) Fe-NC-FeCl₃, (d) Fe-NC-Fe(acac)₃ and (e) Fe-NC-Fe(NO₃)₃.

Samples	S _{BET} (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)
Fe-NC-FeSO ₄	337.9	0.284	17.06
Fe-NC-FeCl ₂	291.4	0.276	17.02
Fe-NC-FeCl ₃	336.5	0.319	15.13
Fe-NC-Fe(acac) ₃	298.8	0.270	16.99
Fe-NC-Fe(NO ₃) ₃	273.9	0.249	16.99

Table S1	Texture	properties	of Co-NSP	C-X san	nples.
	Ionture	properties	01 00 1001	C I Sun	iipics.

Samples	pyridinic N	pyrrolic N	Fe-N	graphitic N
Fe-NC-FeSO ₄	69.89%	18.86%	5.92%	5.33%
Fe-NC-FeCl ₂	60.46%	22.16%	11.58%	5.80%
Fe-NC-FeCl ₃	67.12%	15.82%	12.06%	4.99%
Fe-NC-Fe(acac) ₃	66.13%	16.31%	9.78%	7.77%
Fe-NC-Fe(NO ₃) ₃	58.49%	21.98%	11.89%	7.64%

Table S2 The contents of four types of N in Fe-NC-X.

Table S3 Catalytic hydrogenation results of nitrobenzene over different catalysts.^a

Entry	Catalyst	Conversion(%)	Selectivity(%)
1	Fe-NC-FeSO ₄	52.2	87.4
2	Fe-NC-FeCl ₂	100	94.5
3	Fe-NC-FeCl ₃	95.1	92.8
4	Fe-NC-Fe(acac) ₃	100	97.7
5	Fe-NC-Fe(NO ₃) ₃	78.3	98.6

^a Reaction conditions: nitrobenzene (0.25 mmol), H_2 (3MPa), 21 mg of catalyst, solvent: 1 mL THF + 1 mL H₂O, 130 °C and 14 h.

Gas chromatograph is EWAI GC-4000A with an OV-101 capillary column. Analysis condition: initial temperature of 80 °C, hold for 2 min, and then increase the temperature at 20 °C/min for 10 min to 280 °C, hold for 5 min.

Fig. S4. Recycling performance of Fe-NC-FeCl₂ for CTH of nitrobenzene.

Fig. S5. (a) Fe 2p XPS spectra of Fe-NC-X, (b) Fe 2p_{3/2} spectra of Fe-NC-FeCl₂.

Catalant	Hydrogen	A J J 4	Т	t	Yield	Ref.	
Catalyst	donors	Additive	(°C)	(h)	(%)		
Co ₃ O ₄ -NGr@C	FA	Et ₃ N	100	15	96	[1]	
Fe ₂ O ₃ -NGr@C	FA	Et ₃ N	120	24	94	[2]	
Co-N _x /C-800-AT	FA	-	110	12	>99	[3]	
СоНМА	<i>i</i> -PrOH	КОН	83	2	91	[4]	
Fe ₃ O ₄ /Au	HCOONH ₄ (8 eq)	-	70	4	94	[5]	
γ-Fe ₂ O ₃ /h-MCM	N_2H_4 · H_2O	-	80	2	100	[6]	
[Mo ₃ S ₄ X ₃ (dmpe) ₃]BPh ₄	FA	Et ₃ N	70	10	>99	[7]	
$Fe(BF_4)_2$	FA(4.5 eq)	PP ₃	40	1	95	[8]	
Fe-NC-FeCl ₂	FA(3 eq)	-	120	6	95	This Work	

 Table S4 The results of transfer hydrogenation of nitrobenzene compared with reported catalysts.

References

- 1. R. V. Jagadeesh, D. Banerjee, P. B. Arockiam, H. Junge, K. Junge, M. M. Pohl, J. Radnik, A. Brückner and M. Beller, *Green Chem.*, 2015, **17**, 898-902.
- 2. R. V. Jagadeesh, K. Natte, H. Junge and M. Beller, ACS Catal., 2015, 5, 1526-1529.
- 3. P. Zhou, L. Jiang, F. Wang, K. Deng, K. Lv and Z. Zhang, Sci. Adv., 2017, 3.
- 4. S. K. Mohapatra, S. U. Sonavane, R. V. Jayaram and P. Selvam, *Tetrahedron Lett.*, 2002, **43**, 8537-8529..
- 5. M. B. Gawande, A. K. Rathi, J. Tucek, K. Safarova, N. Bundaleski, O. M. N. D. Teodoro, L. Kvitek, R. S. Varma and R. Zboril, *Green Chem.*, 2014, **16**, 4137-4143.
- 6. M. Tian, X. Cui, K. Liang, J. Ma and Z. Dong, *Inorg. Chem. Front.*, 2016, **3**, 1332-1340.
- I. Sorribes, G. Wienhofer, C. Vicent, K. Junge, R. Llusar and M. Beller, Angew Chem. Int. Ed., 2012, 51, 7794-7798.
- 8. G. Wienhofer, I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar and M. Beller, J. Am. Chem. Soc., 2011, **133**, 12875-12879.