Supporting Information (SI)

Phase Controlled Synthesis of Bifunctional TiO₂ Nanocrystallites via Dmannitol for Dye-Sensitized Solar Cells and Heterogeneous Catalysis

Abdullah M. Al-Enizi^a, T. A. J. Siddiqui^b, Shoyebmohamad F. Shaikh^a, Mohd Ubaidullah^{a*}, Ayman Yousef^c, Rajaram S. Mane^{b*}, and Abu ul Hassan Sarwar Rana^{d*}

^aDepartment of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

^bSchool of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606, M.S., India

^cDepartment of Mathematics and Physics Engineering, Faculty of Engineering at Mataria, Helwan University, Cairo 11718, Egypt.

^dDepartment of Intelligent Mechatronics Engineering, Sejong University, Seoul, South Korea.

Fig. S1 FTIR spectra of; a) pure D-mannitol, and b) an intermediate complex of TiO_2 -D-mannitol.

Fig. S2 a) X-ray diffraction pattern, b) Raman analysis, c) FE-SEM images, and HR-TEM images of $R-TiO_2$ was obtained without assistance of D-mannitol.

Fig. S3 the elemental stoichiometry determined by EDX mapping of TiO₂.

Fig. S4 Uv-Vis band gap of A-TiO₂ photoanode measured on FTO substrate.

1) ¹HNMR of compound 3a

2) ¹HNMR of compound 3b

3) ¹HNMR of compound 3c

4) 1HNMR of compound 3d

Table S1: Hall Measurement and electrical properties of A-TiO₂ nanocrystallite thin film on glass substrate.

Photoanode	Resistivity	Conductivity	Mobility	Sheet Concentration
	$ imes 10^6 \Omega \mathrm{cm}$	\times 10 ⁻⁷ / Ω cm	cm ² /Vs	$\times 10^9 /\mathrm{cm}^2$
A-TiO ₂	3.35	2.96	0.124	-2.38